PROCEEDINGS OF LEARNED SOCIETIES.

LINNEAN SOCIETY.

February 5.-Edward Forster, Esq., V. P., in the Chair.
Read, a paper entitled " A Note upon the Anatomy of the Roots of Ophrydea." By John Lindley, Ph. D., F.R. and L.S., Prof. Bot. University College.

The object of the author in this paper was to show that salep, the prepared roots of certain Ophrydec, is not a substance consisting principally of starch, as is the common opinion among writers of the present day, but is composed of a bassorine-like matter, organized in a peculiar manner.

After stating the opinions of recent authorities, the author gives the results of his own microscopical examination of the tissue of recent and prepared roots, by which it appears that the tubercles of Ophrydece universally contain large cartilaginous nodules of a mucilaginous substance, not coloured by iodine, and a small quantity of the grains of starch, lying in the usual manner in the parenchyma which surround the nodules, and readily susceptible to the usual action of iodine. The tubercles of many South-African Ophrydere present when dried the appearance of bags filled with small pebbles, as if the epidermis had contracted over hard bodies in the inside. If a fresh root of Satyrium pallidum be divided transversely the cause of this appearance is explained, for with its soft parenchyma are mixed tough nodules, clear as water, and often twenty times as large as the cells which surround them. These nodules are easily separable, are tough like horn, and on being sliced appear to be perfectly homogeneous. They are scarcely soluble in cold water; when boiled they become tumid and partially dissolve into a transparent jelly. If exposed to the air they rapidly dry and become brown. The aqueous solution of iodine has no sensible effect upon them in their natural state.

On charring slices of some salep procured at Covent Garden, a coarse preparation of wild Ophrydece, the author found that the nodules apparently homogeneous were composed of extremely minute transparent cells, filled, as he supposed, with a secretion of the same refractive power as themselves, and adhering naturally to each other firmly; the double walls of the cells and intercellular spaces being only made apparent by the charring process. The author explains the error of those who have considered salep to consist chiefly of starch, by allusion to the mode of its preparation. The tubercles

Ann. Nat. Hist. Vol.3. No. 16. May 1839.

PROCEEDINGS OF LEARNED SOCIETIES.

LINNEAN SOCIETY.

February 5.-Edward Forster, Esq., V. P., in the Chair.
Read, a paper entitled " A Note upon the Anatomy of the Roots of Ophrydea." By John Lindley, Ph. D., F.R. and L.S., Prof. Bot. University College.

The object of the author in this paper was to show that salep, the prepared roots of certain Ophrydec, is not a substance consisting principally of starch, as is the common opinion among writers of the present day, but is composed of a bassorine-like matter, organized in a peculiar manner.

After stating the opinions of recent authorities, the author gives the results of his own microscopical examination of the tissue of recent and prepared roots, by which it appears that the tubercles of Ophrydece universally contain large cartilaginous nodules of a mucilaginous substance, not coloured by iodine, and a small quantity of the grains of starch, lying in the usual manner in the parenchyma which surround the nodules, and readily susceptible to the usual action of iodine. The tubercles of many South-African Ophrydere present when dried the appearance of bags filled with small pebbles, as if the epidermis had contracted over hard bodies in the inside. If a fresh root of Satyrium pallidum be divided transversely the cause of this appearance is explained, for with its soft parenchyma are mixed tough nodules, clear as water, and often twenty times as large as the cells which surround them. These nodules are easily separable, are tough like horn, and on being sliced appear to be perfectly homogeneous. They are scarcely soluble in cold water; when boiled they become tumid and partially dissolve into a transparent jelly. If exposed to the air they rapidly dry and become brown. The aqueous solution of iodine has no sensible effect upon them in their natural state.

On charring slices of some salep procured at Covent Garden, a coarse preparation of wild Ophrydece, the author found that the nodules apparently homogeneous were composed of extremely minute transparent cells, filled, as he supposed, with a secretion of the same refractive power as themselves, and adhering naturally to each other firmly; the double walls of the cells and intercellular spaces being only made apparent by the charring process. The author explains the error of those who have considered salep to consist chiefly of starch, by allusion to the mode of its preparation. The tubercles

Ann. Nat. Hist. Vol.3. No. 16. May 1839.

PROCEEDINGS OF LEARNED SOCIETIES.

LINNEAN SOCIETY.

February 5.-Edward Forster, Esq., V. P., in the Chair.
Read, a paper entitled " A Note upon the Anatomy of the Roots of Ophrydea." By John Lindley, Ph. D., F.R. and L.S., Prof. Bot. University College.

The object of the author in this paper was to show that salep, the prepared roots of certain Ophrydec, is not a substance consisting principally of starch, as is the common opinion among writers of the present day, but is composed of a bassorine-like matter, organized in a peculiar manner.

After stating the opinions of recent authorities, the author gives the results of his own microscopical examination of the tissue of recent and prepared roots, by which it appears that the tubercles of Ophrydece universally contain large cartilaginous nodules of a mucilaginous substance, not coloured by iodine, and a small quantity of the grains of starch, lying in the usual manner in the parenchyma which surround the nodules, and readily susceptible to the usual action of iodine. The tubercles of many South-African Ophrydere present when dried the appearance of bags filled with small pebbles, as if the epidermis had contracted over hard bodies in the inside. If a fresh root of Satyrium pallidum be divided transversely the cause of this appearance is explained, for with its soft parenchyma are mixed tough nodules, clear as water, and often twenty times as large as the cells which surround them. These nodules are easily separable, are tough like horn, and on being sliced appear to be perfectly homogeneous. They are scarcely soluble in cold water; when boiled they become tumid and partially dissolve into a transparent jelly. If exposed to the air they rapidly dry and become brown. The aqueous solution of iodine has no sensible effect upon them in their natural state.

On charring slices of some salep procured at Covent Garden, a coarse preparation of wild Ophrydece, the author found that the nodules apparently homogeneous were composed of extremely minute transparent cells, filled, as he supposed, with a secretion of the same refractive power as themselves, and adhering naturally to each other firmly; the double walls of the cells and intercellular spaces being only made apparent by the charring process. The author explains the error of those who have considered salep to consist chiefly of starch, by allusion to the mode of its preparation. The tubercles

Ann. Nat. Hist. Vol.3. No. 16. May 1839.

PROCEEDINGS OF LEARNED SOCIETIES.

LINNEAN SOCIETY.

February 5.-Edward Forster, Esq., V. P., in the Chair.
Read, a paper entitled " A Note upon the Anatomy of the Roots of Ophrydea." By John Lindley, Ph. D., F.R. and L.S., Prof. Bot. University College.

The object of the author in this paper was to show that salep, the prepared roots of certain Ophrydec, is not a substance consisting principally of starch, as is the common opinion among writers of the present day, but is composed of a bassorine-like matter, organized in a peculiar manner.

After stating the opinions of recent authorities, the author gives the results of his own microscopical examination of the tissue of recent and prepared roots, by which it appears that the tubercles of Ophrydece universally contain large cartilaginous nodules of a mucilaginous substance, not coloured by iodine, and a small quantity of the grains of starch, lying in the usual manner in the parenchyma which surround the nodules, and readily susceptible to the usual action of iodine. The tubercles of many South-African Ophrydere present when dried the appearance of bags filled with small pebbles, as if the epidermis had contracted over hard bodies in the inside. If a fresh root of Satyrium pallidum be divided transversely the cause of this appearance is explained, for with its soft parenchyma are mixed tough nodules, clear as water, and often twenty times as large as the cells which surround them. These nodules are easily separable, are tough like horn, and on being sliced appear to be perfectly homogeneous. They are scarcely soluble in cold water; when boiled they become tumid and partially dissolve into a transparent jelly. If exposed to the air they rapidly dry and become brown. The aqueous solution of iodine has no sensible effect upon them in their natural state.

On charring slices of some salep procured at Covent Garden, a coarse preparation of wild Ophrydece, the author found that the nodules apparently homogeneous were composed of extremely minute transparent cells, filled, as he supposed, with a secretion of the same refractive power as themselves, and adhering naturally to each other firmly; the double walls of the cells and intercellular spaces being only made apparent by the charring process. The author explains the error of those who have considered salep to consist chiefly of starch, by allusion to the mode of its preparation. The tubercles

Ann. Nat. Hist. Vol.3. No. 16. May 1839.
are first parboiled and then dried, the effect of which is to dissolve what starch exists in the cells surrounding the nodules. The dissolved starch flows over the surface of the nodules, from which when dried it is undistinguishable, and consequently when iodine is applied to salep the mass appears to become iodide of starch. If the nodules, however, after this action of iodine, be removed, they are seen to retain their original vitreous lustre.

The author remarks that these nodules of Ophrydece are, as far as his observations extend, absent in the tubercles of the other tribes of Orchidacra.

Read, a paper entitled "Some Data towards a Botanical Geography of New Holland." By Dr. John Lhotsky, late of the Civil Service, Van Diemen's Land. Communicated by Prof. Don, Libr. L.S.

The author commences his paper with the observation, that it was the lot of Mr. Brown to become connected in an almost exclusive way with the Flora of New Holland, he having been the first to illustrate its vegetable riches in an extensive and philosophic manner. Notwithstanding the important discoveries since made, his remarks, and especially those upon the botanical geography of that country, (published nearly twenty years ago,) have been confirmed by subsequent observations. The great approximation towards the European Flora, in that part of the country first explored by the author, agrees perfectly with the following observation of Mr. Brown : " It appears that a much greater proportion of the peculiarities of the Australian Flora exist in this, which I have therefore called the principal parallel (between 33° and $35^{\circ} \mathrm{S}$. latitude), and that many of them are nearly confined to it.*" The author proposes the following geographical division of the Flora of the south-eastern part of New Holland.

1st. The coast vegetation.-This class of vegetation clothes the almost moveable sand of the coast, and the rocks of sandstone of the coal formation, or skirts the ponds of salt or brackish water. Epacris, Boronia, Lambertia, Astroloma, Xanthorrhea, Hakea, Banksia, \&c. are the most characteristic genera, forming usually a dense shrubbery of stiff and harsh plants. Of trees, scarcely any but species of Eucalyptus are to be met with.

2nd. Vegetation of the rocky gullies near the sea coast.--Such localities are generally characterized by small creeks or springs of freshwater, of which the localities of the former class are mostly devoid.

* General remarks, geographical and systematical, on the Botany of Terra Australis, p. 580.
are first parboiled and then dried, the effect of which is to dissolve what starch exists in the cells surrounding the nodules. The dissolved starch flows over the surface of the nodules, from which when dried it is undistinguishable, and consequently when iodine is applied to salep the mass appears to become iodide of starch. If the nodules, however, after this action of iodine, be removed, they are seen to retain their original vitreous lustre.

The author remarks that these nodules of Ophrydece are, as far as his observations extend, absent in the tubercles of the other tribes of Orchidacra.

Read, a paper entitled "Some Data towards a Botanical Geography of New Holland." By Dr. John Lhotsky, late of the Civil Service, Van Diemen's Land. Communicated by Prof. Don, Libr. L.S.

The author commences his paper with the observation, that it was the lot of Mr. Brown to become connected in an almost exclusive way with the Flora of New Holland, he having been the first to illustrate its vegetable riches in an extensive and philosophic manner. Notwithstanding the important discoveries since made, his remarks, and especially those upon the botanical geography of that country, (published nearly twenty years ago,) have been confirmed by subsequent observations. The great approximation towards the European Flora, in that part of the country first explored by the author, agrees perfectly with the following observation of Mr. Brown : " It appears that a much greater proportion of the peculiarities of the Australian Flora exist in this, which I have therefore called the principal parallel (between 33° and $35^{\circ} \mathrm{S}$. latitude), and that many of them are nearly confined to it.*" The author proposes the following geographical division of the Flora of the south-eastern part of New Holland.

1st. The coast vegetation.-This class of vegetation clothes the almost moveable sand of the coast, and the rocks of sandstone of the coal formation, or skirts the ponds of salt or brackish water. Epacris, Boronia, Lambertia, Astroloma, Xanthorrhea, Hakea, Banksia, \&c. are the most characteristic genera, forming usually a dense shrubbery of stiff and harsh plants. Of trees, scarcely any but species of Eucalyptus are to be met with.

2nd. Vegetation of the rocky gullies near the sea coast.--Such localities are generally characterized by small creeks or springs of freshwater, of which the localities of the former class are mostly devoid.

* General remarks, geographical and systematical, on the Botany of Terra Australis, p. 580.
are first parboiled and then dried, the effect of which is to dissolve what starch exists in the cells surrounding the nodules. The dissolved starch flows over the surface of the nodules, from which when dried it is undistinguishable, and consequently when iodine is applied to salep the mass appears to become iodide of starch. If the nodules, however, after this action of iodine, be removed, they are seen to retain their original vitreous lustre.

The author remarks that these nodules of Ophrydece are, as far as his observations extend, absent in the tubercles of the other tribes of Orchidacra.

Read, a paper entitled "Some Data towards a Botanical Geography of New Holland." By Dr. John Lhotsky, late of the Civil Service, Van Diemen's Land. Communicated by Prof. Don, Libr. L.S.

The author commences his paper with the observation, that it was the lot of Mr. Brown to become connected in an almost exclusive way with the Flora of New Holland, he having been the first to illustrate its vegetable riches in an extensive and philosophic manner. Notwithstanding the important discoveries since made, his remarks, and especially those upon the botanical geography of that country, (published nearly twenty years ago,) have been confirmed by subsequent observations. The great approximation towards the European Flora, in that part of the country first explored by the author, agrees perfectly with the following observation of Mr. Brown : " It appears that a much greater proportion of the peculiarities of the Australian Flora exist in this, which I have therefore called the principal parallel (between 33° and $35^{\circ} \mathrm{S}$. latitude), and that many of them are nearly confined to it.*" The author proposes the following geographical division of the Flora of the south-eastern part of New Holland.

1st. The coast vegetation.-This class of vegetation clothes the almost moveable sand of the coast, and the rocks of sandstone of the coal formation, or skirts the ponds of salt or brackish water. Epacris, Boronia, Lambertia, Astroloma, Xanthorrhea, Hakea, Banksia, \&c. are the most characteristic genera, forming usually a dense shrubbery of stiff and harsh plants. Of trees, scarcely any but species of Eucalyptus are to be met with.

2nd. Vegetation of the rocky gullies near the sea coast.--Such localities are generally characterized by small creeks or springs of freshwater, of which the localities of the former class are mostly devoid.

* General remarks, geographical and systematical, on the Botany of Terra Australis, p. 580.
are first parboiled and then dried, the effect of which is to dissolve what starch exists in the cells surrounding the nodules. The dissolved starch flows over the surface of the nodules, from which when dried it is undistinguishable, and consequently when iodine is applied to salep the mass appears to become iodide of starch. If the nodules, however, after this action of iodine, be removed, they are seen to retain their original vitreous lustre.

The author remarks that these nodules of Ophrydece are, as far as his observations extend, absent in the tubercles of the other tribes of Orchidacra.

Read, a paper entitled "Some Data towards a Botanical Geography of New Holland." By Dr. John Lhotsky, late of the Civil Service, Van Diemen's Land. Communicated by Prof. Don, Libr. L.S.

The author commences his paper with the observation, that it was the lot of Mr. Brown to become connected in an almost exclusive way with the Flora of New Holland, he having been the first to illustrate its vegetable riches in an extensive and philosophic manner. Notwithstanding the important discoveries since made, his remarks, and especially those upon the botanical geography of that country, (published nearly twenty years ago,) have been confirmed by subsequent observations. The great approximation towards the European Flora, in that part of the country first explored by the author, agrees perfectly with the following observation of Mr. Brown : " It appears that a much greater proportion of the peculiarities of the Australian Flora exist in this, which I have therefore called the principal parallel (between 33° and $35^{\circ} \mathrm{S}$. latitude), and that many of them are nearly confined to it.*" The author proposes the following geographical division of the Flora of the south-eastern part of New Holland.

1st. The coast vegetation.-This class of vegetation clothes the almost moveable sand of the coast, and the rocks of sandstone of the coal formation, or skirts the ponds of salt or brackish water. Epacris, Boronia, Lambertia, Astroloma, Xanthorrhea, Hakea, Banksia, \&c. are the most characteristic genera, forming usually a dense shrubbery of stiff and harsh plants. Of trees, scarcely any but species of Eucalyptus are to be met with.

2nd. Vegetation of the rocky gullies near the sea coast.--Such localities are generally characterized by small creeks or springs of freshwater, of which the localities of the former class are mostly devoid.

* General remarks, geographical and systematical, on the Botany of Terra Australis, p. 580.

Two palms, Corypha australis and Seaforthia elegans, and the wonder of Australian forests, Doryanthes excelsa, adorn these localities.

3rd. The Argyle vegetation characterizes those park-like spots, with their stately Eucalyptus trees growing at some distance from each other, with very little under wood, which have attracted the notice of travellers, from Tasman down to those of our times. The geological features of this region consist of various rocks, the sandstone of the coal formation excepted, which last never yields a good soil. The genera of this class of vegetation are various grasses, Thlaspi, Cerastium, Thymus, Scandix, Hydrocotyle, Dianella, Exarrhena, Silene, Hypericum, \&c., many of them European forms, and soft juicy plants. Where this vegetation occurs are to be found some of the most advantageous parts of the colony for the purposes of grazing.

4th. The Menero vegetation comprehends the Flora of those extensive downs which extend on the east side of the Alps to the extent of more than a hundred miles, and which are capable of maintaining vast numbers of sheep and other cattle. These downs present adifferent aspect in different seasons, being in some covered with the most luxuriant herbage, which at other times is parched and dried up. Many genera of the preceding class occur in these localities, besides Lythrum, Epilobium, Potentilla, Leuzea, Rumcx, and other European genera. The author regrets that the season was too far advanced to examine the Graminea and Cyperacea, which abound in this region.

5th. Alpine vegetation.-This was traced by the author to the summit of Mount William the Fourth.* These mountains being very extensive, will yield a great harvest to future travellers. The few plants collected by the author in this first investigation were two species of Gentiana, Mniarum, Sphagnum, Dracophyllum, Azeroe, Coprosma, Podolepis, some of the latter genus being three feet high.

February 19.-The Lord Bishop of Norwich, President, in the Chair.
Read, " Extracts from Letters addressed to Dr. Royle, V.P.R. \& F.L.S., Prof. Mat. Med., King's College." By Dr. Falconer, Superintendent of the Hon. E. I. C.'s Garden, Saharunpore.

Under date of January 24, 1837, from Saharunpore, Dr. Falconer gives a general report of the state of the garden.
"The Bixa Orellana," he remarks, " now flowers and fruits freely,

[^0]Two palms, Corypha australis and Seaforthia elegans, and the wonder of Australian forests, Doryanthes excelsa, adorn these localities.

3rd. The Argyle vegetation characterizes those park-like spots, with their stately Eucalyptus trees growing at some distance from each other, with very little under wood, which have attracted the notice of travellers, from Tasman down to those of our times. The geological features of this region consist of various rocks, the sandstone of the coal formation excepted, which last never yields a good soil. The genera of this class of vegetation are various grasses, Thlaspi, Cerastium, Thymus, Scandix, Hydrocotyle, Dianella, Exarrhena, Silene, Hypericum, \&c., many of them European forms, and soft juicy plants. Where this vegetation occurs are to be found some of the most advantageous parts of the colony for the purposes of grazing.

4th. The Menero vegetation comprehends the Flora of those extensive downs which extend on the east side of the Alps to the extent of more than a hundred miles, and which are capable of maintaining vast numbers of sheep and other cattle. These downs present adifferent aspect in different seasons, being in some covered with the most luxuriant herbage, which at other times is parched and dried up. Many genera of the preceding class occur in these localities, besides Lythrum, Epilobium, Potentilla, Leuzea, Rumcx, and other European genera. The author regrets that the season was too far advanced to examine the Graminea and Cyperacea, which abound in this region.

5th. Alpine vegetation.-This was traced by the author to the summit of Mount William the Fourth.* These mountains being very extensive, will yield a great harvest to future travellers. The few plants collected by the author in this first investigation were two species of Gentiana, Mniarum, Sphagnum, Dracophyllum, Azeroe, Coprosma, Podolepis, some of the latter genus being three feet high.

February 19.-The Lord Bishop of Norwich, President, in the Chair.
Read, " Extracts from Letters addressed to Dr. Royle, V.P.R. \& F.L.S., Prof. Mat. Med., King's College." By Dr. Falconer, Superintendent of the Hon. E. I. C.'s Garden, Saharunpore.

Under date of January 24, 1837, from Saharunpore, Dr. Falconer gives a general report of the state of the garden.
"The Bixa Orellana," he remarks, " now flowers and fruits freely,

[^1]Two palms, Corypha australis and Seaforthia elegans, and the wonder of Australian forests, Doryanthes excelsa, adorn these localities.

3rd. The Argyle vegetation characterizes those park-like spots, with their stately Eucalyptus trees growing at some distance from each other, with very little under wood, which have attracted the notice of travellers, from Tasman down to those of our times. The geological features of this region consist of various rocks, the sandstone of the coal formation excepted, which last never yields a good soil. The genera of this class of vegetation are various grasses, Thlaspi, Cerastium, Thymus, Scandix, Hydrocotyle, Dianella, Exarrhena, Silene, Hypericum, \&c., many of them European forms, and soft juicy plants. Where this vegetation occurs are to be found some of the most advantageous parts of the colony for the purposes of grazing.

4th. The Menero vegetation comprehends the Flora of those extensive downs which extend on the east side of the Alps to the extent of more than a hundred miles, and which are capable of maintaining vast numbers of sheep and other cattle. These downs present adifferent aspect in different seasons, being in some covered with the most luxuriant herbage, which at other times is parched and dried up. Many genera of the preceding class occur in these localities, besides Lythrum, Epilobium, Potentilla, Leuzea, Rumcx, and other European genera. The author regrets that the season was too far advanced to examine the Graminea and Cyperacea, which abound in this region.

5th. Alpine vegetation.-This was traced by the author to the summit of Mount William the Fourth.* These mountains being very extensive, will yield a great harvest to future travellers. The few plants collected by the author in this first investigation were two species of Gentiana, Mniarum, Sphagnum, Dracophyllum, Azeroe, Coprosma, Podolepis, some of the latter genus being three feet high.

February 19.-The Lord Bishop of Norwich, President, in the Chair.
Read, " Extracts from Letters addressed to Dr. Royle, V.P.R. \& F.L.S., Prof. Mat. Med., King's College." By Dr. Falconer, Superintendent of the Hon. E. I. C.'s Garden, Saharunpore.

Under date of January 24, 1837, from Saharunpore, Dr. Falconer gives a general report of the state of the garden.
"The Bixa Orellana," he remarks, " now flowers and fruits freely,

[^2]Two palms, Corypha australis and Seaforthia elegans, and the wonder of Australian forests, Doryanthes excelsa, adorn these localities.

3rd. The Argyle vegetation characterizes those park-like spots, with their stately Eucalyptus trees growing at some distance from each other, with very little under wood, which have attracted the notice of travellers, from Tasman down to those of our times. The geological features of this region consist of various rocks, the sandstone of the coal formation excepted, which last never yields a good soil. The genera of this class of vegetation are various grasses, Thlaspi, Cerastium, Thymus, Scandix, Hydrocotyle, Dianella, Exarrhena, Silene, Hypericum, \&c., many of them European forms, and soft juicy plants. Where this vegetation occurs are to be found some of the most advantageous parts of the colony for the purposes of grazing.

4th. The Menero vegetation comprehends the Flora of those extensive downs which extend on the east side of the Alps to the extent of more than a hundred miles, and which are capable of maintaining vast numbers of sheep and other cattle. These downs present adifferent aspect in different seasons, being in some covered with the most luxuriant herbage, which at other times is parched and dried up. Many genera of the preceding class occur in these localities, besides Lythrum, Epilobium, Potentilla, Leuzea, Rumcx, and other European genera. The author regrets that the season was too far advanced to examine the Graminea and Cyperacea, which abound in this region.

5th. Alpine vegetation.-This was traced by the author to the summit of Mount William the Fourth.* These mountains being very extensive, will yield a great harvest to future travellers. The few plants collected by the author in this first investigation were two species of Gentiana, Mniarum, Sphagnum, Dracophyllum, Azeroe, Coprosma, Podolepis, some of the latter genus being three feet high.

February 19.-The Lord Bishop of Norwich, President, in the Chair.
Read, " Extracts from Letters addressed to Dr. Royle, V.P.R. \& F.L.S., Prof. Mat. Med., King's College." By Dr. Falconer, Superintendent of the Hon. E. I. C.'s Garden, Saharunpore.

Under date of January 24, 1837, from Saharunpore, Dr. Falconer gives a general report of the state of the garden.
"The Bixa Orellana," he remarks, " now flowers and fruits freely,

[^3]The umbelliferous flowered Panax, near the cinnamon tree, is now a large and lofty tree, and there are numbers of it all over the garden. The Bombay Mangoes and Leechees are abundant with us. The medicinal garden still gives the annual supply of Hyoscyamus, and the Canal nursery turns out about 2000 teaks. The Otaheite sugar cane, brought up by Colvin, is likely soon to spread all over the district; it has succeeded famously here, and I have now in preparation about a couple of beegahs of ground outside the garden for it. I am also preparing for sowing about twenty beegahs with upland Georgia cotton seed, which will undoubtedly be most successful; it ripens before the Bourbon cotton comes into flower. This last season I got a few pods of Egyptian cotton, of the garden growth; the seed only reached me on the 15 th of July, six weeks at the least too late, and it did not all ripen before the frosts, but what did ripen was long, fine, and strong in the staple, and the pods large. I expect to have a better account of it at the end of this season. I have also some Peruvian seed to experiment on.
"The herbarium has been largely added to. The family of all others that has yielded most additions perhaps is the Orchidec. There are upwards of thirty epiphytous species growing on the trees in the garden, and many more in the herbarium ; some of them are most interesting additions : one of them is a triandrous Dendrobium, D. normale, Fal. The three anthers are not the only singularity about it. The flower is perfectly regular ; the three sepals being exactly equal, as are also the three petals, which, although of the same length, are twice as broad as the sepals. The column is also symmetrical; and as there is no labellum, it is difficult when the flower is removed from the axis to find out which of the petals represents the lip. Further, and what is most interesting of all, it clearly shows what is the normal position of the supplementary anthers in the family. Lindley makes them alternate with the lateral petals; while Brown, from the structure of Apostasia and Cypripedium, states that they alternate with the lateral sepals, and belong to a different whorl from the fertile anther. In my plant it is most distinctly evident, both by a decurrent ridge on each filament and by transverse sections of the column at all heights down to its base, that the supplementary anthers have the same relative position as the usual fertile one, and in harmony with Lindley's formula. Further, I have another variety of the species, in which the column is sliced off in front as is usual in the genus, and then the labellar petal is invariably developed into a spurred lip, so that it would appear that in the family the irregularity of the lip is a state

The umbelliferous flowered Panax, near the cinnamon tree, is now a large and lofty tree, and there are numbers of it all over the garden. The Bombay Mangoes and Leechees are abundant with us. The medicinal garden still gives the annual supply of Hyoscyamus, and the Canal nursery turns out about 2000 teaks. The Otaheite sugar cane, brought up by Colvin, is likely soon to spread all over the district; it has succeeded famously here, and I have now in preparation about a couple of beegahs of ground outside the garden for it. I am also preparing for sowing about twenty beegahs with upland Georgia cotton seed, which will undoubtedly be most successful; it ripens before the Bourbon cotton comes into flower. This last season I got a few pods of Egyptian cotton, of the garden growth; the seed only reached me on the 15 th of July, six weeks at the least too late, and it did not all ripen before the frosts, but what did ripen was long, fine, and strong in the staple, and the pods large. I expect to have a better account of it at the end of this season. I have also some Peruvian seed to experiment on.
"The herbarium has been largely added to. The family of all others that has yielded most additions perhaps is the Orchidec. There are upwards of thirty epiphytous species growing on the trees in the garden, and many more in the herbarium ; some of them are most interesting additions : one of them is a triandrous Dendrobium, D. normale, Fal. The three anthers are not the only singularity about it. The flower is perfectly regular ; the three sepals being exactly equal, as are also the three petals, which, although of the same length, are twice as broad as the sepals. The column is also symmetrical; and as there is no labellum, it is difficult when the flower is removed from the axis to find out which of the petals represents the lip. Further, and what is most interesting of all, it clearly shows what is the normal position of the supplementary anthers in the family. Lindley makes them alternate with the lateral petals; while Brown, from the structure of Apostasia and Cypripedium, states that they alternate with the lateral sepals, and belong to a different whorl from the fertile anther. In my plant it is most distinctly evident, both by a decurrent ridge on each filament and by transverse sections of the column at all heights down to its base, that the supplementary anthers have the same relative position as the usual fertile one, and in harmony with Lindley's formula. Further, I have another variety of the species, in which the column is sliced off in front as is usual in the genus, and then the labellar petal is invariably developed into a spurred lip, so that it would appear that in the family the irregularity of the lip is a state

The umbelliferous flowered Panax, near the cinnamon tree, is now a large and lofty tree, and there are numbers of it all over the garden. The Bombay Mangoes and Leechees are abundant with us. The medicinal garden still gives the annual supply of Hyoscyamus, and the Canal nursery turns out about 2000 teaks. The Otaheite sugar cane, brought up by Colvin, is likely soon to spread all over the district; it has succeeded famously here, and I have now in preparation about a couple of beegahs of ground outside the garden for it. I am also preparing for sowing about twenty beegahs with upland Georgia cotton seed, which will undoubtedly be most successful; it ripens before the Bourbon cotton comes into flower. This last season I got a few pods of Egyptian cotton, of the garden growth; the seed only reached me on the 15 th of July, six weeks at the least too late, and it did not all ripen before the frosts, but what did ripen was long, fine, and strong in the staple, and the pods large. I expect to have a better account of it at the end of this season. I have also some Peruvian seed to experiment on.
"The herbarium has been largely added to. The family of all others that has yielded most additions perhaps is the Orchidec. There are upwards of thirty epiphytous species growing on the trees in the garden, and many more in the herbarium ; some of them are most interesting additions : one of them is a triandrous Dendrobium, D. normale, Fal. The three anthers are not the only singularity about it. The flower is perfectly regular ; the three sepals being exactly equal, as are also the three petals, which, although of the same length, are twice as broad as the sepals. The column is also symmetrical; and as there is no labellum, it is difficult when the flower is removed from the axis to find out which of the petals represents the lip. Further, and what is most interesting of all, it clearly shows what is the normal position of the supplementary anthers in the family. Lindley makes them alternate with the lateral petals; while Brown, from the structure of Apostasia and Cypripedium, states that they alternate with the lateral sepals, and belong to a different whorl from the fertile anther. In my plant it is most distinctly evident, both by a decurrent ridge on each filament and by transverse sections of the column at all heights down to its base, that the supplementary anthers have the same relative position as the usual fertile one, and in harmony with Lindley's formula. Further, I have another variety of the species, in which the column is sliced off in front as is usual in the genus, and then the labellar petal is invariably developed into a spurred lip, so that it would appear that in the family the irregularity of the lip is a state

The umbelliferous flowered Panax, near the cinnamon tree, is now a large and lofty tree, and there are numbers of it all over the garden. The Bombay Mangoes and Leechees are abundant with us. The medicinal garden still gives the annual supply of Hyoscyamus, and the Canal nursery turns out about 2000 teaks. The Otaheite sugar cane, brought up by Colvin, is likely soon to spread all over the district; it has succeeded famously here, and I have now in preparation about a couple of beegahs of ground outside the garden for it. I am also preparing for sowing about twenty beegahs with upland Georgia cotton seed, which will undoubtedly be most successful; it ripens before the Bourbon cotton comes into flower. This last season I got a few pods of Egyptian cotton, of the garden growth; the seed only reached me on the 15 th of July, six weeks at the least too late, and it did not all ripen before the frosts, but what did ripen was long, fine, and strong in the staple, and the pods large. I expect to have a better account of it at the end of this season. I have also some Peruvian seed to experiment on.
"The herbarium has been largely added to. The family of all others that has yielded most additions perhaps is the Orchidec. There are upwards of thirty epiphytous species growing on the trees in the garden, and many more in the herbarium ; some of them are most interesting additions : one of them is a triandrous Dendrobium, D. normale, Fal. The three anthers are not the only singularity about it. The flower is perfectly regular ; the three sepals being exactly equal, as are also the three petals, which, although of the same length, are twice as broad as the sepals. The column is also symmetrical; and as there is no labellum, it is difficult when the flower is removed from the axis to find out which of the petals represents the lip. Further, and what is most interesting of all, it clearly shows what is the normal position of the supplementary anthers in the family. Lindley makes them alternate with the lateral petals; while Brown, from the structure of Apostasia and Cypripedium, states that they alternate with the lateral sepals, and belong to a different whorl from the fertile anther. In my plant it is most distinctly evident, both by a decurrent ridge on each filament and by transverse sections of the column at all heights down to its base, that the supplementary anthers have the same relative position as the usual fertile one, and in harmony with Lindley's formula. Further, I have another variety of the species, in which the column is sliced off in front as is usual in the genus, and then the labellar petal is invariably developed into a spurred lip, so that it would appear that in the family the irregularity of the lip is a state
of anamorphosis consequent on the imperfect development of the column, or vice versd; in fact, that the deficiency of the one is abstracted to make up the excess of the other. Next I discovered another genus of the tribe Gastrodia, with a monophyllous perianth, the segments, sepals and petals being united for two-thirds of their length into a tube. I found it on Dhunoultee, and have called it Gamoplexis; it has the habit and look of an Orobanche. I have found also a magnificent Malaxideous genus, standing, when in flower, 9 feet. You never saw a more superb affair, with rich yellow flowers like the Cyrtopera. I have called it Thysanochilus. The seed-vessel has no ribs, and in one flower of it I found a plurality of stamens. I have several other new genera, which it would tire you to describe. Talking of Dhunoultee, I found Wallich's Fraxinus floribunda growing on the ridge half-way between it and Landour, close to the road. You remember the description you give of the irregularity of the Paris polyphylla in Wallich's Plantæ Asiaticæ,-I found the Podophyllum Emodi growing intermixed with it, and strange to say, as if bewitched with the same turn for vagaries, with every number of stamens from 6 to 10, and in almost every flower one filament bearing two anthers, and that filament invariably the one opposite the petiole of the flower-bearing leaf. In one flower I found the following irregularities : 6 petals, 10 anthers, 7 filaments, or stamens if you like; on one filament 3 anthers, on another 2 , and the remaining 5 regular. Singular that it and the Paris should grow together and both so irregular."

Under date of January 26, 1838, from Cashmere, whither he had proceeded on a Botanic mission in connexion with Sir Alex. Burnes's Expedition, Dr. F. says, "I am now wintering in Cashmere, with the prospect before me of pushing across through Little Thibet towards the Kuenlun Mountains when the snow clears. I started from Loodiana, where, by the by, I got the Butomus umbellatus in flower and fruit, new, I believe, to the plains of India; and after a few days at Lahore, I marched on through the Punjab to Attock in the month of July ; no rains and fearful heat in the sandy plains I went along. From the want of rain and my route being through an open plain I did not glean much in my march. The Flora is exactly that of the neighbourhood of Delhi; Peganum Harmala everywhere, with Capparidec, Crotolaria Bushia, Calotropis Hamiltonii, Alhagi Maurorum, Tamarix, Acacia modesta, \&c. \&c. Near Lahore I got what I believe to be a new Asclepiadeous genus exactly intermediate between Calotropis and Paratropis, with the angular and saccate sinued corolla, membrane lipped anthers and
of anamorphosis consequent on the imperfect development of the column, or vice versd; in fact, that the deficiency of the one is abstracted to make up the excess of the other. Next I discovered another genus of the tribe Gastrodia, with a monophyllous perianth, the segments, sepals and petals being united for two-thirds of their length into a tube. I found it on Dhunoultee, and have called it Gamoplexis; it has the habit and look of an Orobanche. I have found also a magnificent Malaxideous genus, standing, when in flower, 9 feet. You never saw a more superb affair, with rich yellow flowers like the Cyrtopera. I have called it Thysanochilus. The seed-vessel has no ribs, and in one flower of it I found a plurality of stamens. I have several other new genera, which it would tire you to describe. Talking of Dhunoultee, I found Wallich's Fraxinus floribunda growing on the ridge half-way between it and Landour, close to the road. You remember the description you give of the irregularity of the Paris polyphylla in Wallich's Plantæ Asiaticæ,-I found the Podophyllum Emodi growing intermixed with it, and strange to say, as if bewitched with the same turn for vagaries, with every number of stamens from 6 to 10, and in almost every flower one filament bearing two anthers, and that filament invariably the one opposite the petiole of the flower-bearing leaf. In one flower I found the following irregularities : 6 petals, 10 anthers, 7 filaments, or stamens if you like; on one filament 3 anthers, on another 2 , and the remaining 5 regular. Singular that it and the Paris should grow together and both so irregular."

Under date of January 26, 1838, from Cashmere, whither he had proceeded on a Botanic mission in connexion with Sir Alex. Burnes's Expedition, Dr. F. says, "I am now wintering in Cashmere, with the prospect before me of pushing across through Little Thibet towards the Kuenlun Mountains when the snow clears. I started from Loodiana, where, by the by, I got the Butomus umbellatus in flower and fruit, new, I believe, to the plains of India; and after a few days at Lahore, I marched on through the Punjab to Attock in the month of July ; no rains and fearful heat in the sandy plains I went along. From the want of rain and my route being through an open plain I did not glean much in my march. The Flora is exactly that of the neighbourhood of Delhi; Peganum Harmala everywhere, with Capparidec, Crotolaria Bushia, Calotropis Hamiltonii, Alhagi Maurorum, Tamarix, Acacia modesta, \&c. \&c. Near Lahore I got what I believe to be a new Asclepiadeous genus exactly intermediate between Calotropis and Paratropis, with the angular and saccate sinued corolla, membrane lipped anthers and
of anamorphosis consequent on the imperfect development of the column, or vice versd; in fact, that the deficiency of the one is abstracted to make up the excess of the other. Next I discovered another genus of the tribe Gastrodia, with a monophyllous perianth, the segments, sepals and petals being united for two-thirds of their length into a tube. I found it on Dhunoultee, and have called it Gamoplexis; it has the habit and look of an Orobanche. I have found also a magnificent Malaxideous genus, standing, when in flower, 9 feet. You never saw a more superb affair, with rich yellow flowers like the Cyrtopera. I have called it Thysanochilus. The seed-vessel has no ribs, and in one flower of it I found a plurality of stamens. I have several other new genera, which it would tire you to describe. Talking of Dhunoultee, I found Wallich's Fraxinus floribunda growing on the ridge half-way between it and Landour, close to the road. You remember the description you give of the irregularity of the Paris polyphylla in Wallich's Plantæ Asiaticæ,-I found the Podophyllum Emodi growing intermixed with it, and strange to say, as if bewitched with the same turn for vagaries, with every number of stamens from 6 to 10, and in almost every flower one filament bearing two anthers, and that filament invariably the one opposite the petiole of the flower-bearing leaf. In one flower I found the following irregularities : 6 petals, 10 anthers, 7 filaments, or stamens if you like; on one filament 3 anthers, on another 2 , and the remaining 5 regular. Singular that it and the Paris should grow together and both so irregular."

Under date of January 26, 1838, from Cashmere, whither he had proceeded on a Botanic mission in connexion with Sir Alex. Burnes's Expedition, Dr. F. says, "I am now wintering in Cashmere, with the prospect before me of pushing across through Little Thibet towards the Kuenlun Mountains when the snow clears. I started from Loodiana, where, by the by, I got the Butomus umbellatus in flower and fruit, new, I believe, to the plains of India; and after a few days at Lahore, I marched on through the Punjab to Attock in the month of July ; no rains and fearful heat in the sandy plains I went along. From the want of rain and my route being through an open plain I did not glean much in my march. The Flora is exactly that of the neighbourhood of Delhi; Peganum Harmala everywhere, with Capparidec, Crotolaria Bushia, Calotropis Hamiltonii, Alhagi Maurorum, Tamarix, Acacia modesta, \&c. \&c. Near Lahore I got what I believe to be a new Asclepiadeous genus exactly intermediate between Calotropis and Paratropis, with the angular and saccate sinued corolla, membrane lipped anthers and
of anamorphosis consequent on the imperfect development of the column, or vice versd; in fact, that the deficiency of the one is abstracted to make up the excess of the other. Next I discovered another genus of the tribe Gastrodia, with a monophyllous perianth, the segments, sepals and petals being united for two-thirds of their length into a tube. I found it on Dhunoultee, and have called it Gamoplexis; it has the habit and look of an Orobanche. I have found also a magnificent Malaxideous genus, standing, when in flower, 9 feet. You never saw a more superb affair, with rich yellow flowers like the Cyrtopera. I have called it Thysanochilus. The seed-vessel has no ribs, and in one flower of it I found a plurality of stamens. I have several other new genera, which it would tire you to describe. Talking of Dhunoultee, I found Wallich's Fraxinus floribunda growing on the ridge half-way between it and Landour, close to the road. You remember the description you give of the irregularity of the Paris polyphylla in Wallich's Plantæ Asiaticæ,-I found the Podophyllum Emodi growing intermixed with it, and strange to say, as if bewitched with the same turn for vagaries, with every number of stamens from 6 to 10, and in almost every flower one filament bearing two anthers, and that filament invariably the one opposite the petiole of the flower-bearing leaf. In one flower I found the following irregularities : 6 petals, 10 anthers, 7 filaments, or stamens if you like; on one filament 3 anthers, on another 2 , and the remaining 5 regular. Singular that it and the Paris should grow together and both so irregular."

Under date of January 26, 1838, from Cashmere, whither he had proceeded on a Botanic mission in connexion with Sir Alex. Burnes's Expedition, Dr. F. says, "I am now wintering in Cashmere, with the prospect before me of pushing across through Little Thibet towards the Kuenlun Mountains when the snow clears. I started from Loodiana, where, by the by, I got the Butomus umbellatus in flower and fruit, new, I believe, to the plains of India; and after a few days at Lahore, I marched on through the Punjab to Attock in the month of July ; no rains and fearful heat in the sandy plains I went along. From the want of rain and my route being through an open plain I did not glean much in my march. The Flora is exactly that of the neighbourhood of Delhi; Peganum Harmala everywhere, with Capparidec, Crotolaria Bushia, Calotropis Hamiltonii, Alhagi Maurorum, Tamarix, Acacia modesta, \&c. \&c. Near Lahore I got what I believe to be a new Asclepiadeous genus exactly intermediate between Calotropis and Paratropis, with the angular and saccate sinued corolla, membrane lipped anthers and
corona of the former, but the coronal leaflets cleft and the pollen masses oval and ventricose as in the latter, with other peculiar characters besides. It is a low, twining, small, fleshy, lance-leaved undershrub. I have called it provisionally Eutropis. It is in great abundance in the Punjab. I met with the Dhak (Butea frondosa) as far as the western bank of the Jhelum. The Flora begins to change at Rawul Pindee, which is elevated and continuous so on to the plain of Chuch, along the banks of the Attock. Here I first came on the famous Zuetoon, the wild olive, Olea -? and further on, at Hussan Abdal, I found Himalayan Rubi and a Cashmeer Dianthus, white flowered and new to you. Near Attock I joined the party, having marched hitherto alone. We halted at Attock, the dry arid hills of which have a peculiar vegetation. We crossed the noble Indus at Attock; a fearful ferry, in the rains the river running eight knots an hour. The lower part of the plain of Peshawur, where we now were, is sandy, and has exactly the Flora of the arid tracts of the Punjab; Salsolas, Chenopodea, Alhagi, Calotropis, Peganum, Tamarix, \&c. But when we got to Peshawur, so much do the seasons differ that peaches were coming into fruit the 15 th of August, and the Kurreel (Capparis aphylla) out of flower only lately. From Peshawur I made an excursion to Cohaut, and from thence to the Salt Hills and the valley of Rungush. In the Salt Hills I got a Stapeliaceous Asclepiad, unfortunately neither in flower nor fruit, very probably one of Wight's Carallumas or Boucerosias. Also the Cassia obovata, the Egyptian senna in flower. I had previously got the same plant from near Delhi, no doubt about the species; certainly not the obtusa of Roxb.; the legumes always crested over the bulge of the seeds. I got numerous other plants. From Peshawur Burnes started for Cabul, and Mackeson and I for Cashmeer. From Attock, Mackeson went by the straight military road, as he was on a military survey, while I made an attempt to run up the Indus into the hills. I got on three marches and was forcibly stopped at Durbund (look at Burnes's map) and threatened with rather rough usage. I then turned across the hills and rejoined my companion in the noble valley of Huzara. The vegetation along the banks of the Indus from Attock to Durbund surprised me much. It is quite that of the characteristic forms of the Deyra Dhoon, and taking difference of latitude and altitude into account, with the great distance westward, this might not have been looked for: Grislea tomentosa, Rottlera tinctoria, Hastingia coccinea, Acacia Catechu, Holostemma, \&c. On the banks of the Indus, in the valley leading up to Cashmeer from Huzara, I found the Dodonaa Burmanniana. You remark in your notice of the Supindacea its absence from the
corona of the former, but the coronal leaflets cleft and the pollen masses oval and ventricose as in the latter, with other peculiar characters besides. It is a low, twining, small, fleshy, lance-leaved undershrub. I have called it provisionally Eutropis. It is in great abundance in the Punjab. I met with the Dhak (Butea frondosa) as far as the western bank of the Jhelum. The Flora begins to change at Rawul Pindee, which is elevated and continuous so on to the plain of Chuch, along the banks of the Attock. Here I first came on the famous Zuetoon, the wild olive, Olea -? and further on, at Hussan Abdal, I found Himalayan Rubi and a Cashmeer Dianthus, white flowered and new to you. Near Attock I joined the party, having marched hitherto alone. We halted at Attock, the dry arid hills of which have a peculiar vegetation. We crossed the noble Indus at Attock; a fearful ferry, in the rains the river running eight knots an hour. The lower part of the plain of Peshawur, where we now were, is sandy, and has exactly the Flora of the arid tracts of the Punjab; Salsolas, Chenopodea, Alhagi, Calotropis, Peganum, Tamarix, \&c. But when we got to Peshawur, so much do the seasons differ that peaches were coming into fruit the 15 th of August, and the Kurreel (Capparis aphylla) out of flower only lately. From Peshawur I made an excursion to Cohaut, and from thence to the Salt Hills and the valley of Rungush. In the Salt Hills I got a Stapeliaceous Asclepiad, unfortunately neither in flower nor fruit, very probably one of Wight's Carallumas or Boucerosias. Also the Cassia obovata, the Egyptian senna in flower. I had previously got the same plant from near Delhi, no doubt about the species; certainly not the obtusa of Roxb.; the legumes always crested over the bulge of the seeds. I got numerous other plants. From Peshawur Burnes started for Cabul, and Mackeson and I for Cashmeer. From Attock, Mackeson went by the straight military road, as he was on a military survey, while I made an attempt to run up the Indus into the hills. I got on three marches and was forcibly stopped at Durbund (look at Burnes's map) and threatened with rather rough usage. I then turned across the hills and rejoined my companion in the noble valley of Huzara. The vegetation along the banks of the Indus from Attock to Durbund surprised me much. It is quite that of the characteristic forms of the Deyra Dhoon, and taking difference of latitude and altitude into account, with the great distance westward, this might not have been looked for: Grislea tomentosa, Rottlera tinctoria, Hastingia coccinea, Acacia Catechu, Holostemma, \&c. On the banks of the Indus, in the valley leading up to Cashmeer from Huzara, I found the Dodonaa Burmanniana. You remark in your notice of the Supindacea its absence from the
corona of the former, but the coronal leaflets cleft and the pollen masses oval and ventricose as in the latter, with other peculiar characters besides. It is a low, twining, small, fleshy, lance-leaved undershrub. I have called it provisionally Eutropis. It is in great abundance in the Punjab. I met with the Dhak (Butea frondosa) as far as the western bank of the Jhelum. The Flora begins to change at Rawul Pindee, which is elevated and continuous so on to the plain of Chuch, along the banks of the Attock. Here I first came on the famous Zuetoon, the wild olive, Olea -? and further on, at Hussan Abdal, I found Himalayan Rubi and a Cashmeer Dianthus, white flowered and new to you. Near Attock I joined the party, having marched hitherto alone. We halted at Attock, the dry arid hills of which have a peculiar vegetation. We crossed the noble Indus at Attock; a fearful ferry, in the rains the river running eight knots an hour. The lower part of the plain of Peshawur, where we now were, is sandy, and has exactly the Flora of the arid tracts of the Punjab; Salsolas, Chenopodea, Alhagi, Calotropis, Peganum, Tamarix, \&c. But when we got to Peshawur, so much do the seasons differ that peaches were coming into fruit the 15 th of August, and the Kurreel (Capparis aphylla) out of flower only lately. From Peshawur I made an excursion to Cohaut, and from thence to the Salt Hills and the valley of Rungush. In the Salt Hills I got a Stapeliaceous Asclepiad, unfortunately neither in flower nor fruit, very probably one of Wight's Carallumas or Boucerosias. Also the Cassia obovata, the Egyptian senna in flower. I had previously got the same plant from near Delhi, no doubt about the species; certainly not the obtusa of Roxb.; the legumes always crested over the bulge of the seeds. I got numerous other plants. From Peshawur Burnes started for Cabul, and Mackeson and I for Cashmeer. From Attock, Mackeson went by the straight military road, as he was on a military survey, while I made an attempt to run up the Indus into the hills. I got on three marches and was forcibly stopped at Durbund (look at Burnes's map) and threatened with rather rough usage. I then turned across the hills and rejoined my companion in the noble valley of Huzara. The vegetation along the banks of the Indus from Attock to Durbund surprised me much. It is quite that of the characteristic forms of the Deyra Dhoon, and taking difference of latitude and altitude into account, with the great distance westward, this might not have been looked for: Grislea tomentosa, Rottlera tinctoria, Hastingia coccinea, Acacia Catechu, Holostemma, \&c. On the banks of the Indus, in the valley leading up to Cashmeer from Huzara, I found the Dodonaa Burmanniana. You remark in your notice of the Supindacea its absence from the
corona of the former, but the coronal leaflets cleft and the pollen masses oval and ventricose as in the latter, with other peculiar characters besides. It is a low, twining, small, fleshy, lance-leaved undershrub. I have called it provisionally Eutropis. It is in great abundance in the Punjab. I met with the Dhak (Butea frondosa) as far as the western bank of the Jhelum. The Flora begins to change at Rawul Pindee, which is elevated and continuous so on to the plain of Chuch, along the banks of the Attock. Here I first came on the famous Zuetoon, the wild olive, Olea -? and further on, at Hussan Abdal, I found Himalayan Rubi and a Cashmeer Dianthus, white flowered and new to you. Near Attock I joined the party, having marched hitherto alone. We halted at Attock, the dry arid hills of which have a peculiar vegetation. We crossed the noble Indus at Attock; a fearful ferry, in the rains the river running eight knots an hour. The lower part of the plain of Peshawur, where we now were, is sandy, and has exactly the Flora of the arid tracts of the Punjab; Salsolas, Chenopodea, Alhagi, Calotropis, Peganum, Tamarix, \&c. But when we got to Peshawur, so much do the seasons differ that peaches were coming into fruit the 15 th of August, and the Kurreel (Capparis aphylla) out of flower only lately. From Peshawur I made an excursion to Cohaut, and from thence to the Salt Hills and the valley of Rungush. In the Salt Hills I got a Stapeliaceous Asclepiad, unfortunately neither in flower nor fruit, very probably one of Wight's Carallumas or Boucerosias. Also the Cassia obovata, the Egyptian senna in flower. I had previously got the same plant from near Delhi, no doubt about the species; certainly not the obtusa of Roxb.; the legumes always crested over the bulge of the seeds. I got numerous other plants. From Peshawur Burnes started for Cabul, and Mackeson and I for Cashmeer. From Attock, Mackeson went by the straight military road, as he was on a military survey, while I made an attempt to run up the Indus into the hills. I got on three marches and was forcibly stopped at Durbund (look at Burnes's map) and threatened with rather rough usage. I then turned across the hills and rejoined my companion in the noble valley of Huzara. The vegetation along the banks of the Indus from Attock to Durbund surprised me much. It is quite that of the characteristic forms of the Deyra Dhoon, and taking difference of latitude and altitude into account, with the great distance westward, this might not have been looked for: Grislea tomentosa, Rottlera tinctoria, Hastingia coccinea, Acacia Catechu, Holostemma, \&c. On the banks of the Indus, in the valley leading up to Cashmeer from Huzara, I found the Dodonaa Burmanniana. You remark in your notice of the Supindacea its absence from the

Bengal and Hindoostan region. Its occurrence with a leap further north is remarkable. From Huzara we marched on by the Paklee road to Mosufferabad. Near Drumbur I came on the Hovenia dulcis. At Mosufferabad I got on a high ridge, and followed it on to Cashmeer, where we arrived early in October. It was now too late in the season to exhaust the Flora of the valley and neighbourhood, so I made up my mind to winter here and make a fresh start in spring. It would take pages to contain what I have observed about the Flora here, late as I came. It has several anomalies; few if any oaks descend on the northern side of the Peerpunjal into the valley. I have not seen one yet. I have selected oaks as a very characteristic type. The same holds with respect to the plants that are associated with the oaks, \&c. about Mussourie. In the lake you see Nelumbium and Euryale ferox, growing along with Menyanthes trifoliata; and cotton, a poor sort, growing on the banks, while the sides of the bounding hills are skirted with pines. I got Staphylea Emodi growing along with Ribes Grossularia (your Himalense ?), while it grows as you know at Mussourie on low slopes near Budraj. The Prangos pabularia grows in the valley. I found it most abundant on Ahatoong, a low trap hill on the valley, but it is not so vigorous a plant as in its Thibetian habitat. I expect in the summer to get as far north as lat. 36° at the least on the Kuenlun or Kara Korun range, a most desirable tract to explore, as it will be clear beyond Himalayan vegetation, partly characteristic of that of central Asia. I have already seen enough to convince me from a trip to the Thibet frontier to near Durass, that the Flora ahead will bear a close resemblance in many general relations to that of the Altai Mountains shown by Ledebour and yourself."
" Deosir, Cashmeer, June 20, 1838.
"I have written to you twice from Cashmeer. I have been going leisurely all round the valley, and into all the subordinate valleys which radiate on all sides from the great one. I have made many acquisitions. Among Ranunculacea I have got species of Hepatica, Ceratocephalus, and Callianthemum, all of which I believe to be new, and making up the very blanks you notice in your 'Illustrations.' Of Callianthemum, I have no knowledge, besides your quotation, but my plant has leaves with umbelliferous habit, 8 white strap-shaped clawed petals, with the nectariferous pore high up on the claw, and a pendulous ovulum. It cannot therefore be a Ranunculus, nor your R. pimpinelloides. Further, I have got a new Ranunculaceous genus, new unless Jacquemont has got it, having the habit of Trollius in its

Bengal and Hindoostan region. Its occurrence with a leap further north is remarkable. From Huzara we marched on by the Paklee road to Mosufferabad. Near Drumbur I came on the Hovenia dulcis. At Mosufferabad I got on a high ridge, and followed it on to Cashmeer, where we arrived early in October. It was now too late in the season to exhaust the Flora of the valley and neighbourhood, so I made up my mind to winter here and make a fresh start in spring. It would take pages to contain what I have observed about the Flora here, late as I came. It has several anomalies; few if any oaks descend on the northern side of the Peerpunjal into the valley. I have not seen one yet. I have selected oaks as a very characteristic type. The same holds with respect to the plants that are associated with the oaks, \&c. about Mussourie. In the lake you see Nelumbium and Euryale ferox, growing along with Menyanthes trifoliata; and cotton, a poor sort, growing on the banks, while the sides of the bounding hills are skirted with pines. I got Staphylea Emodi growing along with Ribes Grossularia (your Himalense ?), while it grows as you know at Mussourie on low slopes near Budraj. The Prangos pabularia grows in the valley. I found it most abundant on Ahatoong, a low trap hill on the valley, but it is not so vigorous a plant as in its Thibetian habitat. I expect in the summer to get as far north as lat. 36° at the least on the Kuenlun or Kara Korun range, a most desirable tract to explore, as it will be clear beyond Himalayan vegetation, partly characteristic of that of central Asia. I have already seen enough to convince me from a trip to the Thibet frontier to near Durass, that the Flora ahead will bear a close resemblance in many general relations to that of the Altai Mountains shown by Ledebour and yourself."
" Deosir, Cashmeer, June 20, 1838.
"I have written to you twice from Cashmeer. I have been going leisurely all round the valley, and into all the subordinate valleys which radiate on all sides from the great one. I have made many acquisitions. Among Ranunculacea I have got species of Hepatica, Ceratocephalus, and Callianthemum, all of which I believe to be new, and making up the very blanks you notice in your 'Illustrations.' Of Callianthemum, I have no knowledge, besides your quotation, but my plant has leaves with umbelliferous habit, 8 white strap-shaped clawed petals, with the nectariferous pore high up on the claw, and a pendulous ovulum. It cannot therefore be a Ranunculus, nor your R. pimpinelloides. Further, I have got a new Ranunculaceous genus, new unless Jacquemont has got it, having the habit of Trollius in its

Bengal and Hindoostan region. Its occurrence with a leap further north is remarkable. From Huzara we marched on by the Paklee road to Mosufferabad. Near Drumbur I came on the Hovenia dulcis. At Mosufferabad I got on a high ridge, and followed it on to Cashmeer, where we arrived early in October. It was now too late in the season to exhaust the Flora of the valley and neighbourhood, so I made up my mind to winter here and make a fresh start in spring. It would take pages to contain what I have observed about the Flora here, late as I came. It has several anomalies; few if any oaks descend on the northern side of the Peerpunjal into the valley. I have not seen one yet. I have selected oaks as a very characteristic type. The same holds with respect to the plants that are associated with the oaks, \&c. about Mussourie. In the lake you see Nelumbium and Euryale ferox, growing along with Menyanthes trifoliata; and cotton, a poor sort, growing on the banks, while the sides of the bounding hills are skirted with pines. I got Staphylea Emodi growing along with Ribes Grossularia (your Himalense ?), while it grows as you know at Mussourie on low slopes near Budraj. The Prangos pabularia grows in the valley. I found it most abundant on Ahatoong, a low trap hill on the valley, but it is not so vigorous a plant as in its Thibetian habitat. I expect in the summer to get as far north as lat. 36° at the least on the Kuenlun or Kara Korun range, a most desirable tract to explore, as it will be clear beyond Himalayan vegetation, partly characteristic of that of central Asia. I have already seen enough to convince me from a trip to the Thibet frontier to near Durass, that the Flora ahead will bear a close resemblance in many general relations to that of the Altai Mountains shown by Ledebour and yourself."
" Deosir, Cashmeer, June 20, 1838.
"I have written to you twice from Cashmeer. I have been going leisurely all round the valley, and into all the subordinate valleys which radiate on all sides from the great one. I have made many acquisitions. Among Ranunculacea I have got species of Hepatica, Ceratocephalus, and Callianthemum, all of which I believe to be new, and making up the very blanks you notice in your 'Illustrations.' Of Callianthemum, I have no knowledge, besides your quotation, but my plant has leaves with umbelliferous habit, 8 white strap-shaped clawed petals, with the nectariferous pore high up on the claw, and a pendulous ovulum. It cannot therefore be a Ranunculus, nor your R. pimpinelloides. Further, I have got a new Ranunculaceous genus, new unless Jacquemont has got it, having the habit of Trollius in its

Bengal and Hindoostan region. Its occurrence with a leap further north is remarkable. From Huzara we marched on by the Paklee road to Mosufferabad. Near Drumbur I came on the Hovenia dulcis. At Mosufferabad I got on a high ridge, and followed it on to Cashmeer, where we arrived early in October. It was now too late in the season to exhaust the Flora of the valley and neighbourhood, so I made up my mind to winter here and make a fresh start in spring. It would take pages to contain what I have observed about the Flora here, late as I came. It has several anomalies; few if any oaks descend on the northern side of the Peerpunjal into the valley. I have not seen one yet. I have selected oaks as a very characteristic type. The same holds with respect to the plants that are associated with the oaks, \&c. about Mussourie. In the lake you see Nelumbium and Euryale ferox, growing along with Menyanthes trifoliata; and cotton, a poor sort, growing on the banks, while the sides of the bounding hills are skirted with pines. I got Staphylea Emodi growing along with Ribes Grossularia (your Himalense ?), while it grows as you know at Mussourie on low slopes near Budraj. The Prangos pabularia grows in the valley. I found it most abundant on Ahatoong, a low trap hill on the valley, but it is not so vigorous a plant as in its Thibetian habitat. I expect in the summer to get as far north as lat. 36° at the least on the Kuenlun or Kara Korun range, a most desirable tract to explore, as it will be clear beyond Himalayan vegetation, partly characteristic of that of central Asia. I have already seen enough to convince me from a trip to the Thibet frontier to near Durass, that the Flora ahead will bear a close resemblance in many general relations to that of the Altai Mountains shown by Ledebour and yourself."
" Deosir, Cashmeer, June 20, 1838.
"I have written to you twice from Cashmeer. I have been going leisurely all round the valley, and into all the subordinate valleys which radiate on all sides from the great one. I have made many acquisitions. Among Ranunculacea I have got species of Hepatica, Ceratocephalus, and Callianthemum, all of which I believe to be new, and making up the very blanks you notice in your 'Illustrations.' Of Callianthemum, I have no knowledge, besides your quotation, but my plant has leaves with umbelliferous habit, 8 white strap-shaped clawed petals, with the nectariferous pore high up on the claw, and a pendulous ovulum. It cannot therefore be a Ranunculus, nor your R. pimpinelloides. Further, I have got a new Ranunculaceous genus, new unless Jacquemont has got it, having the habit of Trollius in its
leaves and mode of inflorescence, 8 herbaceous sepals, 24 strapshaped petals, plane with no fovea at the claw, and solitary transversely attached ovula, being neither pendulous nor erect. It forms a transition from Adonis to the Ranunculea. This is another blank filled up in the desiderata so pointedly mentioned by you. I have called the genus Chrysocyathus. It grows intermixed with Trollius, 'inter nives deliquescentes,' and till I examined it I took it for a Trollius. I have got a new species of Adoxa, forming I believe the second of the genus, A. inodora (mihi), a larger plant than the A. Moschatellina, and with the lateral flower 12-androus, and 6 segments in the flowers. I have also a new Epimedium, a large handsome leaved herb, E. hydaspidis (mihi), and two species of Alchemilla. Fritillaria imperialis, the Crown Imperial of English gardens, grows wild in the lofty shady forests of Cashmeer. The Cashmerees regard it to be unlucky, and grow it only near musjids and over graves. Fothergilla involucrata (mihi), belonging to the Hamamelidea, exists in vast abundance in Cashmeer, forming whole tracts of low jungle ; -strange that it should not have been brought before either to you or to me. It occupies the place that the hazel (Corylus Avellana) does in England, and at a little distance does not look unlike it. Thus, Hamamelidea are found at opposite ends of the Himalaya range, Bucklandia and Sedgwickia in Assam, and Fothergilla in Cashmeer, but none of the family have yet been met with in the intermediate tracts. Prangos pabularia I have found in vast abundance in several directions, but the Cashmerees do not know it for any useful purpose, except as a plant highly prized by Europeans. They sometimes use the roots to destroy worms, by steeping them in Dhaun fields as Calamus (butch) is used in Hindoostan. The Umbellifera have not come into fruit yet, so I do not know much of my new acquisitions, but I have got among others a species of Turgenia, a genus which I believe is new to the Himalayas. My brother wrote me that you were inquiring about Koot and Amomum. Koot is exported from Cashmere : it is a plant of the natural family of Composita, which has not yet come into flower, but I shall let you know about it hereafter. Amomum, Humama, or Amamoon, is not known in Cashmeer nor to be had at the Piensarees. I have got a magnificent species of Ornithogallum ?, with a scape 7 feet high: the Cashmerees call it Prustereen, and prize it highly as a culinary vegetable. I have had Dodonaa brought to me from above Jummos in the heart of the hills, growing along the banks of the Chenab. I mentioned to you in a former letter some of the anomalies I had met with in the absence of forms common elsewhere; not an oak, nor Andromeda,
leaves and mode of inflorescence, 8 herbaceous sepals, 24 strapshaped petals, plane with no fovea at the claw, and solitary transversely attached ovula, being neither pendulous nor erect. It forms a transition from Adonis to the Ranunculea. This is another blank filled up in the desiderata so pointedly mentioned by you. I have called the genus Chrysocyathus. It grows intermixed with Trollius, 'inter nives deliquescentes,' and till I examined it I took it for a Trollius. I have got a new species of Adoxa, forming I believe the second of the genus, A. inodora (mihi), a larger plant than the A. Moschatellina, and with the lateral flower 12-androus, and 6 segments in the flowers. I have also a new Epimedium, a large handsome leaved herb, E. hydaspidis (mihi), and two species of Alchemilla. Fritillaria imperialis, the Crown Imperial of English gardens, grows wild in the lofty shady forests of Cashmeer. The Cashmerees regard it to be unlucky, and grow it only near musjids and over graves. Fothergilla involucrata (mihi), belonging to the Hamamelidea, exists in vast abundance in Cashmeer, forming whole tracts of low jungle ; -strange that it should not have been brought before either to you or to me. It occupies the place that the hazel (Corylus Avellana) does in England, and at a little distance does not look unlike it. Thus, Hamamelidea are found at opposite ends of the Himalaya range, Bucklandia and Sedgwickia in Assam, and Fothergilla in Cashmeer, but none of the family have yet been met with in the intermediate tracts. Prangos pabularia I have found in vast abundance in several directions, but the Cashmerees do not know it for any useful purpose, except as a plant highly prized by Europeans. They sometimes use the roots to destroy worms, by steeping them in Dhaun fields as Calamus (butch) is used in Hindoostan. The Umbellifera have not come into fruit yet, so I do not know much of my new acquisitions, but I have got among others a species of Turgenia, a genus which I believe is new to the Himalayas. My brother wrote me that you were inquiring about Koot and Amomum. Koot is exported from Cashmere : it is a plant of the natural family of Composita, which has not yet come into flower, but I shall let you know about it hereafter. Amomum, Humama, or Amamoon, is not known in Cashmeer nor to be had at the Piensarees. I have got a magnificent species of Ornithogallum ?, with a scape 7 feet high: the Cashmerees call it Prustereen, and prize it highly as a culinary vegetable. I have had Dodonaa brought to me from above Jummos in the heart of the hills, growing along the banks of the Chenab. I mentioned to you in a former letter some of the anomalies I had met with in the absence of forms common elsewhere; not an oak, nor Andromeda,
leaves and mode of inflorescence, 8 herbaceous sepals, 24 strapshaped petals, plane with no fovea at the claw, and solitary transversely attached ovula, being neither pendulous nor erect. It forms a transition from Adonis to the Ranunculea. This is another blank filled up in the desiderata so pointedly mentioned by you. I have called the genus Chrysocyathus. It grows intermixed with Trollius, 'inter nives deliquescentes,' and till I examined it I took it for a Trollius. I have got a new species of Adoxa, forming I believe the second of the genus, A. inodora (mihi), a larger plant than the A. Moschatellina, and with the lateral flower 12-androus, and 6 segments in the flowers. I have also a new Epimedium, a large handsome leaved herb, E. hydaspidis (mihi), and two species of Alchemilla. Fritillaria imperialis, the Crown Imperial of English gardens, grows wild in the lofty shady forests of Cashmeer. The Cashmerees regard it to be unlucky, and grow it only near musjids and over graves. Fothergilla involucrata (mihi), belonging to the Hamamelidea, exists in vast abundance in Cashmeer, forming whole tracts of low jungle ; -strange that it should not have been brought before either to you or to me. It occupies the place that the hazel (Corylus Avellana) does in England, and at a little distance does not look unlike it. Thus, Hamamelidea are found at opposite ends of the Himalaya range, Bucklandia and Sedgwickia in Assam, and Fothergilla in Cashmeer, but none of the family have yet been met with in the intermediate tracts. Prangos pabularia I have found in vast abundance in several directions, but the Cashmerees do not know it for any useful purpose, except as a plant highly prized by Europeans. They sometimes use the roots to destroy worms, by steeping them in Dhaun fields as Calamus (butch) is used in Hindoostan. The Umbellifera have not come into fruit yet, so I do not know much of my new acquisitions, but I have got among others a species of Turgenia, a genus which I believe is new to the Himalayas. My brother wrote me that you were inquiring about Koot and Amomum. Koot is exported from Cashmere : it is a plant of the natural family of Composita, which has not yet come into flower, but I shall let you know about it hereafter. Amomum, Humama, or Amamoon, is not known in Cashmeer nor to be had at the Piensarees. I have got a magnificent species of Ornithogallum ?, with a scape 7 feet high: the Cashmerees call it Prustereen, and prize it highly as a culinary vegetable. I have had Dodonaa brought to me from above Jummos in the heart of the hills, growing along the banks of the Chenab. I mentioned to you in a former letter some of the anomalies I had met with in the absence of forms common elsewhere; not an oak, nor Andromeda,
leaves and mode of inflorescence, 8 herbaceous sepals, 24 strapshaped petals, plane with no fovea at the claw, and solitary transversely attached ovula, being neither pendulous nor erect. It forms a transition from Adonis to the Ranunculea. This is another blank filled up in the desiderata so pointedly mentioned by you. I have called the genus Chrysocyathus. It grows intermixed with Trollius, 'inter nives deliquescentes,' and till I examined it I took it for a Trollius. I have got a new species of Adoxa, forming I believe the second of the genus, A. inodora (mihi), a larger plant than the A. Moschatellina, and with the lateral flower 12-androus, and 6 segments in the flowers. I have also a new Epimedium, a large handsome leaved herb, E. hydaspidis (mihi), and two species of Alchemilla. Fritillaria imperialis, the Crown Imperial of English gardens, grows wild in the lofty shady forests of Cashmeer. The Cashmerees regard it to be unlucky, and grow it only near musjids and over graves. Fothergilla involucrata (mihi), belonging to the Hamamelidea, exists in vast abundance in Cashmeer, forming whole tracts of low jungle ; -strange that it should not have been brought before either to you or to me. It occupies the place that the hazel (Corylus Avellana) does in England, and at a little distance does not look unlike it. Thus, Hamamelidea are found at opposite ends of the Himalaya range, Bucklandia and Sedgwickia in Assam, and Fothergilla in Cashmeer, but none of the family have yet been met with in the intermediate tracts. Prangos pabularia I have found in vast abundance in several directions, but the Cashmerees do not know it for any useful purpose, except as a plant highly prized by Europeans. They sometimes use the roots to destroy worms, by steeping them in Dhaun fields as Calamus (butch) is used in Hindoostan. The Umbellifera have not come into fruit yet, so I do not know much of my new acquisitions, but I have got among others a species of Turgenia, a genus which I believe is new to the Himalayas. My brother wrote me that you were inquiring about Koot and Amomum. Koot is exported from Cashmere : it is a plant of the natural family of Composita, which has not yet come into flower, but I shall let you know about it hereafter. Amomum, Humama, or Amamoon, is not known in Cashmeer nor to be had at the Piensarees. I have got a magnificent species of Ornithogallum ?, with a scape 7 feet high: the Cashmerees call it Prustereen, and prize it highly as a culinary vegetable. I have had Dodonaa brought to me from above Jummos in the heart of the hills, growing along the banks of the Chenab. I mentioned to you in a former letter some of the anomalies I had met with in the absence of forms common elsewhere; not an oak, nor Andromeda,

Rhododendron arboreum, Mahonia nepalensis, \&c., have I yet found, though so common in the hills elsewhere. I have got Sparganium (carinatum, mihi), Butomus and Villarsia Nymphoides from the jhils. A species of Sagittaria is used here as a CashmeereeSalep, the natives collecting the roots as in China. The Conifere are, as to the eastward, 3 pines, 2 or 3 firs and Deodar, but I have not seen the Cu pressus torulosa, the lofty cypress of the Mussourie hills."

ZOOLOGICAL SOCIETY.

July 24, 1838.-Thomas Bell, Esq., in the Chair.
A letter, addressed to the Secretary, was read, from Walter Paton, Esq., accompanying a donation to the Museum of an Indian Fowl, remarkable for having had one of its spurs engrafted upon its head. The spur, in consequence of its removal to a part in which the supply of arterial blood was greatly increased, had grown to an unnatural size, and hung down in crescentic shape, presenting a very singular appearance.

Mr. Martin brought before the Meeting a collection of Snakes procured by the Euphrates Expedition, which, at the request of the Chairman, he proceeded to notice in detail.

The first, he observed, appeared to be referable to the Coluber Cliffordii; it agreed in every respect with specimens of that snake from Trebizond, procured by Keith Abbott, Esq., except that its colours were more obscure. Of this species there were several specimens, young and adult.

The others he regarded as new, and described them as follows :
Coluber Chesneri. This species is allied to Col. 'Hippocrepis, but differs in the shape of the muzzle, (which is more acute,) in the figure and extent of the nasal and labial plates, and in the disposition of the markings.

The labial plates are small and numerous, and in one specimen several are divided.

The posterior frontals are small, and in one specimen are divided into two.

The anterior frontals are contracted.
The superciliary plates are convex ;-the eyes are small.
The scales of the trunk are small, imbricate, and without a keel.
The head is pale yellowish brown, the plates beautifully freckled or finely marbled with dark brown : a brown band traverses the superciliary and vertical plates from eye to eye, and then descends on each side obliquely to the angle of the mouth. The labial plates are bordered with dusky brown or deep gray.

Rhododendron arboreum, Mahonia nepalensis, \&c., have I yet found, though so common in the hills elsewhere. I have got Sparganium (carinatum, mihi), Butomus and Villarsia Nymphoides from the jhils. A species of Sagittaria is used here as a CashmeereeSalep, the natives collecting the roots as in China. The Conifere are, as to the eastward, 3 pines, 2 or 3 firs and Deodar, but I have not seen the Cu pressus torulosa, the lofty cypress of the Mussourie hills."

ZOOLOGICAL SOCIETY.

July 24, 1838.-Thomas Bell, Esq., in the Chair.
A letter, addressed to the Secretary, was read, from Walter Paton, Esq., accompanying a donation to the Museum of an Indian Fowl, remarkable for having had one of its spurs engrafted upon its head. The spur, in consequence of its removal to a part in which the supply of arterial blood was greatly increased, had grown to an unnatural size, and hung down in crescentic shape, presenting a very singular appearance.

Mr. Martin brought before the Meeting a collection of Snakes procured by the Euphrates Expedition, which, at the request of the Chairman, he proceeded to notice in detail.

The first, he observed, appeared to be referable to the Coluber Cliffordii; it agreed in every respect with specimens of that snake from Trebizond, procured by Keith Abbott, Esq., except that its colours were more obscure. Of this species there were several specimens, young and adult.

The others he regarded as new, and described them as follows :
Coluber Chesneri. This species is allied to Col. 'Hippocrepis, but differs in the shape of the muzzle, (which is more acute,) in the figure and extent of the nasal and labial plates, and in the disposition of the markings.

The labial plates are small and numerous, and in one specimen several are divided.

The posterior frontals are small, and in one specimen are divided into two.

The anterior frontals are contracted.
The superciliary plates are convex ;-the eyes are small.
The scales of the trunk are small, imbricate, and without a keel.
The head is pale yellowish brown, the plates beautifully freckled or finely marbled with dark brown : a brown band traverses the superciliary and vertical plates from eye to eye, and then descends on each side obliquely to the angle of the mouth. The labial plates are bordered with dusky brown or deep gray.

Rhododendron arboreum, Mahonia nepalensis, \&c., have I yet found, though so common in the hills elsewhere. I have got Sparganium (carinatum, mihi), Butomus and Villarsia Nymphoides from the jhils. A species of Sagittaria is used here as a CashmeereeSalep, the natives collecting the roots as in China. The Conifere are, as to the eastward, 3 pines, 2 or 3 firs and Deodar, but I have not seen the Cu pressus torulosa, the lofty cypress of the Mussourie hills."

ZOOLOGICAL SOCIETY.

July 24, 1838.-Thomas Bell, Esq., in the Chair.
A letter, addressed to the Secretary, was read, from Walter Paton, Esq., accompanying a donation to the Museum of an Indian Fowl, remarkable for having had one of its spurs engrafted upon its head. The spur, in consequence of its removal to a part in which the supply of arterial blood was greatly increased, had grown to an unnatural size, and hung down in crescentic shape, presenting a very singular appearance.

Mr. Martin brought before the Meeting a collection of Snakes procured by the Euphrates Expedition, which, at the request of the Chairman, he proceeded to notice in detail.

The first, he observed, appeared to be referable to the Coluber Cliffordii; it agreed in every respect with specimens of that snake from Trebizond, procured by Keith Abbott, Esq., except that its colours were more obscure. Of this species there were several specimens, young and adult.

The others he regarded as new, and described them as follows :
Coluber Chesneri. This species is allied to Col. 'Hippocrepis, but differs in the shape of the muzzle, (which is more acute,) in the figure and extent of the nasal and labial plates, and in the disposition of the markings.

The labial plates are small and numerous, and in one specimen several are divided.

The posterior frontals are small, and in one specimen are divided into two.

The anterior frontals are contracted.
The superciliary plates are convex ;-the eyes are small.
The scales of the trunk are small, imbricate, and without a keel.
The head is pale yellowish brown, the plates beautifully freckled or finely marbled with dark brown : a brown band traverses the superciliary and vertical plates from eye to eye, and then descends on each side obliquely to the angle of the mouth. The labial plates are bordered with dusky brown or deep gray.

Rhododendron arboreum, Mahonia nepalensis, \&c., have I yet found, though so common in the hills elsewhere. I have got Sparganium (carinatum, mihi), Butomus and Villarsia Nymphoides from the jhils. A species of Sagittaria is used here as a CashmeereeSalep, the natives collecting the roots as in China. The Conifere are, as to the eastward, 3 pines, 2 or 3 firs and Deodar, but I have not seen the Cu pressus torulosa, the lofty cypress of the Mussourie hills."

ZOOLOGICAL SOCIETY.

July 24, 1838.-Thomas Bell, Esq., in the Chair.
A letter, addressed to the Secretary, was read, from Walter Paton, Esq., accompanying a donation to the Museum of an Indian Fowl, remarkable for having had one of its spurs engrafted upon its head. The spur, in consequence of its removal to a part in which the supply of arterial blood was greatly increased, had grown to an unnatural size, and hung down in crescentic shape, presenting a very singular appearance.

Mr. Martin brought before the Meeting a collection of Snakes procured by the Euphrates Expedition, which, at the request of the Chairman, he proceeded to notice in detail.

The first, he observed, appeared to be referable to the Coluber Cliffordii; it agreed in every respect with specimens of that snake from Trebizond, procured by Keith Abbott, Esq., except that its colours were more obscure. Of this species there were several specimens, young and adult.

The others he regarded as new, and described them as follows :
Coluber Chesneri. This species is allied to Col. 'Hippocrepis, but differs in the shape of the muzzle, (which is more acute,) in the figure and extent of the nasal and labial plates, and in the disposition of the markings.

The labial plates are small and numerous, and in one specimen several are divided.

The posterior frontals are small, and in one specimen are divided into two.

The anterior frontals are contracted.
The superciliary plates are convex ;-the eyes are small.
The scales of the trunk are small, imbricate, and without a keel.
The head is pale yellowish brown, the plates beautifully freckled or finely marbled with dark brown : a brown band traverses the superciliary and vertical plates from eye to eye, and then descends on each side obliquely to the angle of the mouth. The labial plates are bordered with dusky brown or deep gray.

The ground colour of the hody above is yellowish brown; a series of square spots of a brown, or olive brown colour, extend from the back of the neck, above the median dorsal line, to the end of the tail. On the sides of the neck begins a line of the same colour, which soon breaks into elongated narrow marks, which towards the middle of the body become confused, broken, and irregular.

The superior margins of the abdominal plates are tinged with gray or dusky brown.

The whole of the under surface of head, body, and tail, pale yellow.

Caudal plates, 69 pairs in one specimen, and 57 in another. Length of head and body, 1 foot 11 inches; of tail, $4 \frac{3}{4}$ inches.

Coronella multicincta. Allied to the "Couleuvre à capuchon' but has the muzzle much shorter and rounder; it differs also in the distribution of the colours.

The head is broad, the eyes very small, the muzzle very short and blunt.
The head is gray, finely and closely marbled, and dotted with black; a ring of which colour encircles the neck. The ground colour of the trunk above is pale cinereous gray, barred with transverse marks of black, broadest in the middle, and having a disposition to assume the arrow-head form ; they unite with the black of the. abdomen alternately, so that their direction across the back is not directly transverse but obliquely so. Length of head and body, 1 foot, $1 \frac{1}{2}$ inches; of tail, $2 \frac{1}{2}$ inches.

Coronella modesta. Head small; muzzle short, but moderately pointed ; eyes small. Scales of upper parts smooth and small; universal colour yellowish gray. A black band passes from eye to eye ; a second crosses the occiput ; and a third of a more decided tint encircles the back of the neck. In a specimen from Trebizond, procured by K. Abbott, Esq., the marks on the head are more obscure. Length of head and body, 9 inches; of tail, $2 \frac{1}{2}$ inches.

Coronella pulchra. Head long, flat, and pointed at the muzzle; eyes moderate.

Scales small and smooth.
General ground colour ashy gray ; the head above beautifully marbled and mottled with black; an irregular mark crosses each superciliary plate and extends upon the vertical; and a mark of the same character traverses each occipital, and extends upon the sides of the occiput. A black mark runs below the eye to the margin of the lips, and a second to the angle of the mouth ; a series of blackish spots begins on the back of the neek, and runs down the back,

The ground colour of the hody above is yellowish brown; a series of square spots of a brown, or olive brown colour, extend from the back of the neck, above the median dorsal line, to the end of the tail. On the sides of the neck begins a line of the same colour, which soon breaks into elongated narrow marks, which towards the middle of the body become confused, broken, and irregular.

The superior margins of the abdominal plates are tinged with gray or dusky brown.

The whole of the under surface of head, body, and tail, pale yellow.

Caudal plates, 69 pairs in one specimen, and 57 in another. Length of head and body, 1 foot 11 inches; of tail, $4 \frac{3}{4}$ inches.

Coronella multicincta. Allied to the "Couleuvre à capuchon' but has the muzzle much shorter and rounder; it differs also in the distribution of the colours.

The head is broad, the eyes very small, the muzzle very short and blunt.
The head is gray, finely and closely marbled, and dotted with black; a ring of which colour encircles the neck. The ground colour of the trunk above is pale cinereous gray, barred with transverse marks of black, broadest in the middle, and having a disposition to assume the arrow-head form ; they unite with the black of the. abdomen alternately, so that their direction across the back is not directly transverse but obliquely so. Length of head and body, 1 foot, $1 \frac{1}{2}$ inches; of tail, $2 \frac{1}{2}$ inches.

Coronella modesta. Head small; muzzle short, but moderately pointed ; eyes small. Scales of upper parts smooth and small; universal colour yellowish gray. A black band passes from eye to eye ; a second crosses the occiput ; and a third of a more decided tint encircles the back of the neck. In a specimen from Trebizond, procured by K. Abbott, Esq., the marks on the head are more obscure. Length of head and body, 9 inches; of tail, $2 \frac{1}{2}$ inches.

Coronella pulchra. Head long, flat, and pointed at the muzzle; eyes moderate.

Scales small and smooth.
General ground colour ashy gray ; the head above beautifully marbled and mottled with black; an irregular mark crosses each superciliary plate and extends upon the vertical; and a mark of the same character traverses each occipital, and extends upon the sides of the occiput. A black mark runs below the eye to the margin of the lips, and a second to the angle of the mouth ; a series of blackish spots begins on the back of the neek, and runs down the back,

The ground colour of the hody above is yellowish brown; a series of square spots of a brown, or olive brown colour, extend from the back of the neck, above the median dorsal line, to the end of the tail. On the sides of the neck begins a line of the same colour, which soon breaks into elongated narrow marks, which towards the middle of the body become confused, broken, and irregular.

The superior margins of the abdominal plates are tinged with gray or dusky brown.

The whole of the under surface of head, body, and tail, pale yellow.

Caudal plates, 69 pairs in one specimen, and 57 in another. Length of head and body, 1 foot 11 inches; of tail, $4 \frac{3}{4}$ inches.

Coronella multicincta. Allied to the "Couleuvre à capuchon' but has the muzzle much shorter and rounder; it differs also in the distribution of the colours.

The head is broad, the eyes very small, the muzzle very short and blunt.
The head is gray, finely and closely marbled, and dotted with black; a ring of which colour encircles the neck. The ground colour of the trunk above is pale cinereous gray, barred with transverse marks of black, broadest in the middle, and having a disposition to assume the arrow-head form ; they unite with the black of the. abdomen alternately, so that their direction across the back is not directly transverse but obliquely so. Length of head and body, 1 foot, $1 \frac{1}{2}$ inches; of tail, $2 \frac{1}{2}$ inches.

Coronella modesta. Head small; muzzle short, but moderately pointed ; eyes small. Scales of upper parts smooth and small; universal colour yellowish gray. A black band passes from eye to eye ; a second crosses the occiput ; and a third of a more decided tint encircles the back of the neck. In a specimen from Trebizond, procured by K. Abbott, Esq., the marks on the head are more obscure. Length of head and body, 9 inches; of tail, $2 \frac{1}{2}$ inches.

Coronella pulchra. Head long, flat, and pointed at the muzzle; eyes moderate.

Scales small and smooth.
General ground colour ashy gray ; the head above beautifully marbled and mottled with black; an irregular mark crosses each superciliary plate and extends upon the vertical; and a mark of the same character traverses each occipital, and extends upon the sides of the occiput. A black mark runs below the eye to the margin of the lips, and a second to the angle of the mouth ; a series of blackish spots begins on the back of the neek, and runs down the back,

The ground colour of the hody above is yellowish brown; a series of square spots of a brown, or olive brown colour, extend from the back of the neck, above the median dorsal line, to the end of the tail. On the sides of the neck begins a line of the same colour, which soon breaks into elongated narrow marks, which towards the middle of the body become confused, broken, and irregular.

The superior margins of the abdominal plates are tinged with gray or dusky brown.

The whole of the under surface of head, body, and tail, pale yellow.

Caudal plates, 69 pairs in one specimen, and 57 in another. Length of head and body, 1 foot 11 inches; of tail, $4 \frac{3}{4}$ inches.

Coronella multicincta. Allied to the "Couleuvre à capuchon' but has the muzzle much shorter and rounder; it differs also in the distribution of the colours.

The head is broad, the eyes very small, the muzzle very short and blunt.
The head is gray, finely and closely marbled, and dotted with black; a ring of which colour encircles the neck. The ground colour of the trunk above is pale cinereous gray, barred with transverse marks of black, broadest in the middle, and having a disposition to assume the arrow-head form ; they unite with the black of the. abdomen alternately, so that their direction across the back is not directly transverse but obliquely so. Length of head and body, 1 foot, $1 \frac{1}{2}$ inches; of tail, $2 \frac{1}{2}$ inches.

Coronella modesta. Head small; muzzle short, but moderately pointed ; eyes small. Scales of upper parts smooth and small; universal colour yellowish gray. A black band passes from eye to eye ; a second crosses the occiput ; and a third of a more decided tint encircles the back of the neck. In a specimen from Trebizond, procured by K. Abbott, Esq., the marks on the head are more obscure. Length of head and body, 9 inches; of tail, $2 \frac{1}{2}$ inches.

Coronella pulchra. Head long, flat, and pointed at the muzzle; eyes moderate.

Scales small and smooth.
General ground colour ashy gray ; the head above beautifully marbled and mottled with black; an irregular mark crosses each superciliary plate and extends upon the vertical; and a mark of the same character traverses each occipital, and extends upon the sides of the occiput. A black mark runs below the eye to the margin of the lips, and a second to the angle of the mouth ; a series of blackish spots begins on the back of the neek, and runs down the back,
where they become larger, and often broken into a double alternating series; a line of smaller and deeper black spots runs along each side, and the upper margins of the abdominal plates also are irregularly mottled with black. The plates of the abdomen are minutely and obscurely freckled with dusky black. Length of head and body, 1 foot $1 \frac{1}{2}$ inch; of tail, $3 \frac{1}{2}$ inches.

Vipera Euphratica. Allied to Vipera elegans, but differs in the disposition of the plates around and between the nostrils, and in the style of its colouring. A large fossa indicates, as in Vip. elegans, the aperture of the nostrils, and within this a valve, only to be seen when the fossa is opened, stretches obliquely across, forming the posterior margin of the nasal canal, as it extends from the bottom of the fossa.

The rostral plate is large and rounded above; the muzzle is large and swollen; the eyes sunk, but are not overshadowed, as in V. elegans, by a single superciliary plate; the scales, however, which occupy its place, are somewhat larger than those covering the top of the skull between the eyes. A large elongated scale intervenes between the nasal cavity and the rostral plate. The scales between the nostrils are larger than those which succeed them; the labials are rather small, the fourth from the rostral being the largest-their number on each side is ten. The scales on the top of the head are small, keeled, subacute at the points; those of the trunk are large, flat, elongated, with rounded points, and narrowly keeled.

Subcaudal plates 47 pairs.
Body stout and robust, gradually tapering to the apex of the tail. The general colour of the upper surface is brownish gray, minutely freckled with black, the dots of which are more clustered on the sides, in some places, and at regular intervals, giving the appearance of obscure clouded fascia, or nebula. The plates of the under surface are pale yellow, obscurely mottled and dotted with dusky gray. Length of head and body, 4 feet 5 inches; of tail, $7 \frac{1}{4}$ inches.

Two other snakes, one from India, the other from Antigua, were also described as follows:

Coluber Cantori. Eyes large; head broad; muzzle moderate; vertical plate broad, as are also the two occipital plates, and the anterior ocular on each side. Scales of body small, smooth, and closely imbricate.

Body decp, somewhat compressed and tapering.
General colour of upper surface glossy brownish black; a black spot below each eye, on the meeting edges of the 5th and 6th labial plates; a black line from the back of the eye to the angle of the
where they become larger, and often broken into a double alternating series; a line of smaller and deeper black spots runs along each side, and the upper margins of the abdominal plates also are irregularly mottled with black. The plates of the abdomen are minutely and obscurely freckled with dusky black. Length of head and body, 1 foot $1 \frac{1}{2}$ inch; of tail, $3 \frac{1}{2}$ inches.

Vipera Euphratica. Allied to Vipera elegans, but differs in the disposition of the plates around and between the nostrils, and in the style of its colouring. A large fossa indicates, as in Vip. elegans, the aperture of the nostrils, and within this a valve, only to be seen when the fossa is opened, stretches obliquely across, forming the posterior margin of the nasal canal, as it extends from the bottom of the fossa.

The rostral plate is large and rounded above; the muzzle is large and swollen; the eyes sunk, but are not overshadowed, as in V. elegans, by a single superciliary plate; the scales, however, which occupy its place, are somewhat larger than those covering the top of the skull between the eyes. A large elongated scale intervenes between the nasal cavity and the rostral plate. The scales between the nostrils are larger than those which succeed them; the labials are rather small, the fourth from the rostral being the largest-their number on each side is ten. The scales on the top of the head are small, keeled, subacute at the points; those of the trunk are large, flat, elongated, with rounded points, and narrowly keeled.

Subcaudal plates 47 pairs.
Body stout and robust, gradually tapering to the apex of the tail. The general colour of the upper surface is brownish gray, minutely freckled with black, the dots of which are more clustered on the sides, in some places, and at regular intervals, giving the appearance of obscure clouded fascia, or nebula. The plates of the under surface are pale yellow, obscurely mottled and dotted with dusky gray. Length of head and body, 4 feet 5 inches; of tail, $7 \frac{1}{4}$ inches.

Two other snakes, one from India, the other from Antigua, were also described as follows:

Coluber Cantori. Eyes large; head broad; muzzle moderate; vertical plate broad, as are also the two occipital plates, and the anterior ocular on each side. Scales of body small, smooth, and closely imbricate.

Body decp, somewhat compressed and tapering.
General colour of upper surface glossy brownish black; a black spot below each eye, on the meeting edges of the 5th and 6th labial plates; a black line from the back of the eye to the angle of the
where they become larger, and often broken into a double alternating series; a line of smaller and deeper black spots runs along each side, and the upper margins of the abdominal plates also are irregularly mottled with black. The plates of the abdomen are minutely and obscurely freckled with dusky black. Length of head and body, 1 foot $1 \frac{1}{2}$ inch; of tail, $3 \frac{1}{2}$ inches.

Vipera Euphratica. Allied to Vipera elegans, but differs in the disposition of the plates around and between the nostrils, and in the style of its colouring. A large fossa indicates, as in Vip. elegans, the aperture of the nostrils, and within this a valve, only to be seen when the fossa is opened, stretches obliquely across, forming the posterior margin of the nasal canal, as it extends from the bottom of the fossa.

The rostral plate is large and rounded above; the muzzle is large and swollen; the eyes sunk, but are not overshadowed, as in V. elegans, by a single superciliary plate; the scales, however, which occupy its place, are somewhat larger than those covering the top of the skull between the eyes. A large elongated scale intervenes between the nasal cavity and the rostral plate. The scales between the nostrils are larger than those which succeed them; the labials are rather small, the fourth from the rostral being the largest-their number on each side is ten. The scales on the top of the head are small, keeled, subacute at the points; those of the trunk are large, flat, elongated, with rounded points, and narrowly keeled.

Subcaudal plates 47 pairs.
Body stout and robust, gradually tapering to the apex of the tail. The general colour of the upper surface is brownish gray, minutely freckled with black, the dots of which are more clustered on the sides, in some places, and at regular intervals, giving the appearance of obscure clouded fascia, or nebula. The plates of the under surface are pale yellow, obscurely mottled and dotted with dusky gray. Length of head and body, 4 feet 5 inches; of tail, $7 \frac{1}{4}$ inches.

Two other snakes, one from India, the other from Antigua, were also described as follows:

Coluber Cantori. Eyes large; head broad; muzzle moderate; vertical plate broad, as are also the two occipital plates, and the anterior ocular on each side. Scales of body small, smooth, and closely imbricate.

Body decp, somewhat compressed and tapering.
General colour of upper surface glossy brownish black; a black spot below each eye, on the meeting edges of the 5th and 6th labial plates; a black line from the back of the eye to the angle of the
where they become larger, and often broken into a double alternating series; a line of smaller and deeper black spots runs along each side, and the upper margins of the abdominal plates also are irregularly mottled with black. The plates of the abdomen are minutely and obscurely freckled with dusky black. Length of head and body, 1 foot $1 \frac{1}{2}$ inch; of tail, $3 \frac{1}{2}$ inches.

Vipera Euphratica. Allied to Vipera elegans, but differs in the disposition of the plates around and between the nostrils, and in the style of its colouring. A large fossa indicates, as in Vip. elegans, the aperture of the nostrils, and within this a valve, only to be seen when the fossa is opened, stretches obliquely across, forming the posterior margin of the nasal canal, as it extends from the bottom of the fossa.

The rostral plate is large and rounded above; the muzzle is large and swollen; the eyes sunk, but are not overshadowed, as in V. elegans, by a single superciliary plate; the scales, however, which occupy its place, are somewhat larger than those covering the top of the skull between the eyes. A large elongated scale intervenes between the nasal cavity and the rostral plate. The scales between the nostrils are larger than those which succeed them; the labials are rather small, the fourth from the rostral being the largest-their number on each side is ten. The scales on the top of the head are small, keeled, subacute at the points; those of the trunk are large, flat, elongated, with rounded points, and narrowly keeled.

Subcaudal plates 47 pairs.
Body stout and robust, gradually tapering to the apex of the tail. The general colour of the upper surface is brownish gray, minutely freckled with black, the dots of which are more clustered on the sides, in some places, and at regular intervals, giving the appearance of obscure clouded fascia, or nebula. The plates of the under surface are pale yellow, obscurely mottled and dotted with dusky gray. Length of head and body, 4 feet 5 inches; of tail, $7 \frac{1}{4}$ inches.

Two other snakes, one from India, the other from Antigua, were also described as follows:

Coluber Cantori. Eyes large; head broad; muzzle moderate; vertical plate broad, as are also the two occipital plates, and the anterior ocular on each side. Scales of body small, smooth, and closely imbricate.

Body decp, somewhat compressed and tapering.
General colour of upper surface glossy brownish black; a black spot below each eye, on the meeting edges of the 5th and 6th labial plates; a black line from the back of the eye to the angle of the
mouth, and a black band from the side of each occipital plate to the sides of the neck, where it ends abruptly.

Along the sides, for the anterior half of the body, a small whitish spot occurs at regular intervals, with a broad black spot below it ; these marks become fainter and fainter, and at length disappear. The central line of the back, from the neck to the middle of the body, pale brown.

Abdomen yellowish white, becoming dusky as it proceeds ; the posterior portion and the under surface of the tail being a little paler than the ground colour of the upper surface. Length of head and body, 1 foot 1 inch; of tail, $3 \frac{1}{2}$ inches.

Mr. Martin observed, that Dr. Cantor, in honor of whom he named this Snake, had observed it in India; and, according to the observations of this gentleman, it did not attain much larger dimensions than those of the specimen exhibited.

Inhabits India.
The exact locality of the specimen exhibited unknown.
Herpetodryas punctifer. Head narrow, scarcely distinct from the body; muzzle short and pointed; eyes small; body stout and gradually tapering. Scales smooth, short, broad, and imbricate.

General colour pale brown. A dark brown line runs down the top of the head; a riband of dark brown, made up of diamond-shaped marks joined together, commences at the occiput, and runs down the middle of the back to the end of the tail, on which last it is a simple line ; a brown riband, little darker than the ground colour, but narrowly margined with dark brown, begins behind each eye, but soon loses itself on the sides of the body. Every scale at its apex has two minute dots of chalk-white, which, if not examined through a lens, might lead to the idea of their being the indications of pores; they are, however, simply round little dots of opake white. Plates of abdomen pale yellowish white, irregularly and obscurely marked with a dusky tint.

The specific term punctifer is given in allusion to the two white points at the apex of each scale.

Inhabits Antigua.

GEOLOGICAL SOCIETY.

Dec. 9, 1838.-A paper on the "Phascolotherium," being the second part of the " Description of the Remains of Marsupial, Mammalia from the Stonesfield Slate," by Richard Owen, Esq., F.G.S., was read.

Mr. Owen first gave a brief summary of the characters of the
mouth, and a black band from the side of each occipital plate to the sides of the neck, where it ends abruptly.

Along the sides, for the anterior half of the body, a small whitish spot occurs at regular intervals, with a broad black spot below it ; these marks become fainter and fainter, and at length disappear. The central line of the back, from the neck to the middle of the body, pale brown.

Abdomen yellowish white, becoming dusky as it proceeds ; the posterior portion and the under surface of the tail being a little paler than the ground colour of the upper surface. Length of head and body, 1 foot 1 inch; of tail, $3 \frac{1}{2}$ inches.

Mr. Martin observed, that Dr. Cantor, in honor of whom he named this Snake, had observed it in India; and, according to the observations of this gentleman, it did not attain much larger dimensions than those of the specimen exhibited.

Inhabits India.
The exact locality of the specimen exhibited unknown.
Herpetodryas punctifer. Head narrow, scarcely distinct from the body; muzzle short and pointed; eyes small; body stout and gradually tapering. Scales smooth, short, broad, and imbricate.

General colour pale brown. A dark brown line runs down the top of the head; a riband of dark brown, made up of diamond-shaped marks joined together, commences at the occiput, and runs down the middle of the back to the end of the tail, on which last it is a simple line ; a brown riband, little darker than the ground colour, but narrowly margined with dark brown, begins behind each eye, but soon loses itself on the sides of the body. Every scale at its apex has two minute dots of chalk-white, which, if not examined through a lens, might lead to the idea of their being the indications of pores; they are, however, simply round little dots of opake white. Plates of abdomen pale yellowish white, irregularly and obscurely marked with a dusky tint.

The specific term punctifer is given in allusion to the two white points at the apex of each scale.

Inhabits Antigua.

GEOLOGICAL SOCIETY.

Dec. 9, 1838.-A paper on the "Phascolotherium," being the second part of the " Description of the Remains of Marsupial, Mammalia from the Stonesfield Slate," by Richard Owen, Esq., F.G.S., was read.

Mr. Owen first gave a brief summary of the characters of the
mouth, and a black band from the side of each occipital plate to the sides of the neck, where it ends abruptly.

Along the sides, for the anterior half of the body, a small whitish spot occurs at regular intervals, with a broad black spot below it ; these marks become fainter and fainter, and at length disappear. The central line of the back, from the neck to the middle of the body, pale brown.

Abdomen yellowish white, becoming dusky as it proceeds ; the posterior portion and the under surface of the tail being a little paler than the ground colour of the upper surface. Length of head and body, 1 foot 1 inch; of tail, $3 \frac{1}{2}$ inches.

Mr. Martin observed, that Dr. Cantor, in honor of whom he named this Snake, had observed it in India; and, according to the observations of this gentleman, it did not attain much larger dimensions than those of the specimen exhibited.

Inhabits India.
The exact locality of the specimen exhibited unknown.
Herpetodryas punctifer. Head narrow, scarcely distinct from the body; muzzle short and pointed; eyes small; body stout and gradually tapering. Scales smooth, short, broad, and imbricate.

General colour pale brown. A dark brown line runs down the top of the head; a riband of dark brown, made up of diamond-shaped marks joined together, commences at the occiput, and runs down the middle of the back to the end of the tail, on which last it is a simple line ; a brown riband, little darker than the ground colour, but narrowly margined with dark brown, begins behind each eye, but soon loses itself on the sides of the body. Every scale at its apex has two minute dots of chalk-white, which, if not examined through a lens, might lead to the idea of their being the indications of pores; they are, however, simply round little dots of opake white. Plates of abdomen pale yellowish white, irregularly and obscurely marked with a dusky tint.

The specific term punctifer is given in allusion to the two white points at the apex of each scale.

Inhabits Antigua.

GEOLOGICAL SOCIETY.

Dec. 9, 1838.-A paper on the "Phascolotherium," being the second part of the " Description of the Remains of Marsupial, Mammalia from the Stonesfield Slate," by Richard Owen, Esq., F.G.S., was read.

Mr. Owen first gave a brief summary of the characters of the
mouth, and a black band from the side of each occipital plate to the sides of the neck, where it ends abruptly.

Along the sides, for the anterior half of the body, a small whitish spot occurs at regular intervals, with a broad black spot below it ; these marks become fainter and fainter, and at length disappear. The central line of the back, from the neck to the middle of the body, pale brown.

Abdomen yellowish white, becoming dusky as it proceeds ; the posterior portion and the under surface of the tail being a little paler than the ground colour of the upper surface. Length of head and body, 1 foot 1 inch; of tail, $3 \frac{1}{2}$ inches.

Mr. Martin observed, that Dr. Cantor, in honor of whom he named this Snake, had observed it in India; and, according to the observations of this gentleman, it did not attain much larger dimensions than those of the specimen exhibited.

Inhabits India.
The exact locality of the specimen exhibited unknown.
Herpetodryas punctifer. Head narrow, scarcely distinct from the body; muzzle short and pointed; eyes small; body stout and gradually tapering. Scales smooth, short, broad, and imbricate.

General colour pale brown. A dark brown line runs down the top of the head; a riband of dark brown, made up of diamond-shaped marks joined together, commences at the occiput, and runs down the middle of the back to the end of the tail, on which last it is a simple line ; a brown riband, little darker than the ground colour, but narrowly margined with dark brown, begins behind each eye, but soon loses itself on the sides of the body. Every scale at its apex has two minute dots of chalk-white, which, if not examined through a lens, might lead to the idea of their being the indications of pores; they are, however, simply round little dots of opake white. Plates of abdomen pale yellowish white, irregularly and obscurely marked with a dusky tint.

The specific term punctifer is given in allusion to the two white points at the apex of each scale.

Inhabits Antigua.

GEOLOGICAL SOCIETY.

Dec. 9, 1838.-A paper on the "Phascolotherium," being the second part of the " Description of the Remains of Marsupial, Mammalia from the Stonesfield Slate," by Richard Owen, Esq., F.G.S., was read.

Mr. Owen first gave a brief summary of the characters of the
" Thylacotherium," described in the first part of the memoir*, and which he conceives fully prove the mammiferous nature of that fossil. He stated, that the remains of the split condyles in the specimen demonstrate their original convex form, which is diametrically opposite to that which characterizes the same part in all reptiles and all ovipara;-that the size, figure and position of the coronoid process are such as were never yet witnessed in any except a zoophagous mammal endowed with a temporal muscle sufficiently developed to demand so extensive an attachment for working a powerful carnivorous jaw;-that the teeth, composed of dense ivory with crowns covered with a thick coat of enamel, are every where distinct from the substance of the jaw, but have two fangs deeply imbedded in it;-that these teeth, which belong to the molar series, are of two kinds; the hinder being bristled with five cusps, four of which are placed in pairs transversely across the crown of the teeth, and the anterior or false molars, having a different form, and only two or three cusps-characters never yet found united in the teeth of any other than a zoophagous mammiferous quadruped;-that the general form of the jaw corresponds with the preceding more essential indications of its mammiferous nature. Fully impressed with the value of these characters, as determining the class to which the fossils belonged, Mr. Owen stated, that he had sought in the next place for secondary characters which might reveal the group of mammalia to which the remains could be assigned, and that he had found in the modification of the angle of the jaw, combined with the form, structure and proportions of the teeth, sufficient evidence to induce him to believe, that the Thylacotherium was a marsupial quadruped.

Mr. Owen then recapitulated the objections against the mammiferous nature of the Thylacotherian jaws from their supposed imperfect state ; and repeated his former assertion, that they are in a condition to enable these characters to be fully ascertained : he next reviewed, first the differences of opinion with respect to the actual structure of the jaw ; and, secondly, to the interpretation of admitted appearances.

1. As respects the structure.-It has been asserted that the jaws must belong to cold-blooded vertebrata, because the articular surface is in the form of an entering angle; to which Mr. Owen replies, that the articular surface is supported on a convex condyle, which is met with in no other class of vertebrata except in the mammalia. Again, it is asserted, that the teeth are all of an uni-

* An abstract of the first part of Prof. $\varrho_{\text {wen's }}$ memoir was given at p. 61 of the present volume.-Edit.
" Thylacotherium," described in the first part of the memoir*, and which he conceives fully prove the mammiferous nature of that fossil. He stated, that the remains of the split condyles in the specimen demonstrate their original convex form, which is diametrically opposite to that which characterizes the same part in all reptiles and all ovipara;-that the size, figure and position of the coronoid process are such as were never yet witnessed in any except a zoophagous mammal endowed with a temporal muscle sufficiently developed to demand so extensive an attachment for working a powerful carnivorous jaw;-that the teeth, composed of dense ivory with crowns covered with a thick coat of enamel, are every where distinct from the substance of the jaw, but have two fangs deeply imbedded in it;-that these teeth, which belong to the molar series, are of two kinds; the hinder being bristled with five cusps, four of which are placed in pairs transversely across the crown of the teeth, and the anterior or false molars, having a different form, and only two or three cusps-characters never yet found united in the teeth of any other than a zoophagous mammiferous quadruped;-that the general form of the jaw corresponds with the preceding more essential indications of its mammiferous nature. Fully impressed with the value of these characters, as determining the class to which the fossils belonged, Mr. Owen stated, that he had sought in the next place for secondary characters which might reveal the group of mammalia to which the remains could be assigned, and that he had found in the modification of the angle of the jaw, combined with the form, structure and proportions of the teeth, sufficient evidence to induce him to believe, that the Thylacotherium was a marsupial quadruped.

Mr. Owen then recapitulated the objections against the mammiferous nature of the Thylacotherian jaws from their supposed imperfect state ; and repeated his former assertion, that they are in a condition to enable these characters to be fully ascertained : he next reviewed, first the differences of opinion with respect to the actual structure of the jaw ; and, secondly, to the interpretation of admitted appearances.

1. As respects the structure.-It has been asserted that the jaws must belong to cold-blooded vertebrata, because the articular surface is in the form of an entering angle; to which Mr. Owen replies, that the articular surface is supported on a convex condyle, which is met with in no other class of vertebrata except in the mammalia. Again, it is asserted, that the teeth are all of an uni-

* An abstract of the first part of Prof. $\varrho_{\text {wen's }}$ memoir was given at p. 61 of the present volume.-Edit.
" Thylacotherium," described in the first part of the memoir*, and which he conceives fully prove the mammiferous nature of that fossil. He stated, that the remains of the split condyles in the specimen demonstrate their original convex form, which is diametrically opposite to that which characterizes the same part in all reptiles and all ovipara;-that the size, figure and position of the coronoid process are such as were never yet witnessed in any except a zoophagous mammal endowed with a temporal muscle sufficiently developed to demand so extensive an attachment for working a powerful carnivorous jaw;-that the teeth, composed of dense ivory with crowns covered with a thick coat of enamel, are every where distinct from the substance of the jaw, but have two fangs deeply imbedded in it;-that these teeth, which belong to the molar series, are of two kinds; the hinder being bristled with five cusps, four of which are placed in pairs transversely across the crown of the teeth, and the anterior or false molars, having a different form, and only two or three cusps-characters never yet found united in the teeth of any other than a zoophagous mammiferous quadruped;-that the general form of the jaw corresponds with the preceding more essential indications of its mammiferous nature. Fully impressed with the value of these characters, as determining the class to which the fossils belonged, Mr. Owen stated, that he had sought in the next place for secondary characters which might reveal the group of mammalia to which the remains could be assigned, and that he had found in the modification of the angle of the jaw, combined with the form, structure and proportions of the teeth, sufficient evidence to induce him to believe, that the Thylacotherium was a marsupial quadruped.

Mr. Owen then recapitulated the objections against the mammiferous nature of the Thylacotherian jaws from their supposed imperfect state ; and repeated his former assertion, that they are in a condition to enable these characters to be fully ascertained : he next reviewed, first the differences of opinion with respect to the actual structure of the jaw ; and, secondly, to the interpretation of admitted appearances.

1. As respects the structure.-It has been asserted that the jaws must belong to cold-blooded vertebrata, because the articular surface is in the form of an entering angle; to which Mr. Owen replies, that the articular surface is supported on a convex condyle, which is met with in no other class of vertebrata except in the mammalia. Again, it is asserted, that the teeth are all of an uni-

* An abstract of the first part of Prof. $\varrho_{\text {wen's }}$ memoir was given at p. 61 of the present volume.-Edit.
" Thylacotherium," described in the first part of the memoir*, and which he conceives fully prove the mammiferous nature of that fossil. He stated, that the remains of the split condyles in the specimen demonstrate their original convex form, which is diametrically opposite to that which characterizes the same part in all reptiles and all ovipara;-that the size, figure and position of the coronoid process are such as were never yet witnessed in any except a zoophagous mammal endowed with a temporal muscle sufficiently developed to demand so extensive an attachment for working a powerful carnivorous jaw;-that the teeth, composed of dense ivory with crowns covered with a thick coat of enamel, are every where distinct from the substance of the jaw, but have two fangs deeply imbedded in it;-that these teeth, which belong to the molar series, are of two kinds; the hinder being bristled with five cusps, four of which are placed in pairs transversely across the crown of the teeth, and the anterior or false molars, having a different form, and only two or three cusps-characters never yet found united in the teeth of any other than a zoophagous mammiferous quadruped;-that the general form of the jaw corresponds with the preceding more essential indications of its mammiferous nature. Fully impressed with the value of these characters, as determining the class to which the fossils belonged, Mr. Owen stated, that he had sought in the next place for secondary characters which might reveal the group of mammalia to which the remains could be assigned, and that he had found in the modification of the angle of the jaw, combined with the form, structure and proportions of the teeth, sufficient evidence to induce him to believe, that the Thylacotherium was a marsupial quadruped.

Mr. Owen then recapitulated the objections against the mammiferous nature of the Thylacotherian jaws from their supposed imperfect state ; and repeated his former assertion, that they are in a condition to enable these characters to be fully ascertained : he next reviewed, first the differences of opinion with respect to the actual structure of the jaw ; and, secondly, to the interpretation of admitted appearances.

1. As respects the structure.-It has been asserted that the jaws must belong to cold-blooded vertebrata, because the articular surface is in the form of an entering angle; to which Mr. Owen replies, that the articular surface is supported on a convex condyle, which is met with in no other class of vertebrata except in the mammalia. Again, it is asserted, that the teeth are all of an uni-

* An abstract of the first part of Prof. $\varrho_{\text {wen's }}$ memoir was given at p. 61 of the present volume.-Edit.
form structure, as in certain reptiles; but, on reference to the fossils, Mr. Owen states, it will be found that such is not the case, and that the actual difference in the structure of the teeth strongly supports the mammiferous theory of the fossils.

2. With respect to the argument founded on an interpretation of structure, which really exists, the author showed, that the Thylacotherium, having eleven molars on each side of the lower jaw is no objection to its mammiferous nature, because among the placental carnivora, the Canis Megalotis has constantly one more grinder on each side of the lower jaw than the usual number; because the Chrysochlore among the Insectivora has also eightinstead of seven molars in each ramus of the lower jaw ; and the Myrmecobius, among the Marsupialia, has nine molars on each side of the lower jaw; and because some of the insectivorous Armadillos and zoophagous Cetacea offer still more numerous and reptile-like teeth, with all the true and essential characters of the mammiferous class. The objection to the false molars having two fangs, Mr. Owen showed was futile, as the greater number of the spurious molars in every genus of the placental fere have two fangs, and the whole of them in the Marsupialia. If the ascending ramus in the Stonesfield jaws had been absent, and with it the evidence of their mammiferous nature afforded by the condyloid, coronoid and angular processes, Mr . Owen stated, that he conceived the teeth alone would have given sufficient proof, especially in their double fangs, that the fossils do belong to the highest class of animals.

In reply to the objections founded on the double fangs of the Basilosaurus, Mr. Owen said, that the characters of that fossil not having been fully given, it is doubtful to what class the animal belonged; and, in answer to the opinion, that certain sharks have double fangs, he explained, that the widely bifurcate basis supporting the tooth of the shark, is no part of the actual tooth, but true bone, and ossified parts of the jaw itself, to which the tooth is anchylosed at one part, and the ligaments of connexion attached at the other. The form, depth and position of the sockets of the teeth in the Thylacothere are precisely similar to those in the small opossums. The colour of the fossils, Mr. Owen said, could be no objection to those acquainted with the diversity in this respect, which obtains in the fossil remains of Mammalia. Lastly, with respect to the Thylacothere, the author stated, that the only trace of compound structure is a mere vascular groove running along its lower margin, and that a similar structure is present in the corresponding part of the lower jaw of some species of opossum, of the Wombat, of the Balcena antarctica, and of the Myrmecobius, though the groove does
form structure, as in certain reptiles; but, on reference to the fossils, Mr. Owen states, it will be found that such is not the case, and that the actual difference in the structure of the teeth strongly supports the mammiferous theory of the fossils.
2. With respect to the argument founded on an interpretation of structure, which really exists, the author showed, that the Thylacotherium, having eleven molars on each side of the lower jaw is no objection to its mammiferous nature, because among the placental carnivora, the Canis Megalotis has constantly one more grinder on each side of the lower jaw than the usual number; because the Chrysochlore among the Insectivora has also eightinstead of seven molars in each ramus of the lower jaw ; and the Myrmecobius, among the Marsupialia, has nine molars on each side of the lower jaw; and because some of the insectivorous Armadillos and zoophagous Cetacea offer still more numerous and reptile-like teeth, with all the true and essential characters of the mammiferous class. The objection to the false molars having two fangs, Mr. Owen showed was futile, as the greater number of the spurious molars in every genus of the placental fere have two fangs, and the whole of them in the Marsupialia. If the ascending ramus in the Stonesfield jaws had been absent, and with it the evidence of their mammiferous nature afforded by the condyloid, coronoid and angular processes, Mr . Owen stated, that he conceived the teeth alone would have given sufficient proof, especially in their double fangs, that the fossils do belong to the highest class of animals.

In reply to the objections founded on the double fangs of the Basilosaurus, Mr. Owen said, that the characters of that fossil not having been fully given, it is doubtful to what class the animal belonged; and, in answer to the opinion, that certain sharks have double fangs, he explained, that the widely bifurcate basis supporting the tooth of the shark, is no part of the actual tooth, but true bone, and ossified parts of the jaw itself, to which the tooth is anchylosed at one part, and the ligaments of connexion attached at the other. The form, depth and position of the sockets of the teeth in the Thylacothere are precisely similar to those in the small opossums. The colour of the fossils, Mr. Owen said, could be no objection to those acquainted with the diversity in this respect, which obtains in the fossil remains of Mammalia. Lastly, with respect to the Thylacothere, the author stated, that the only trace of compound structure is a mere vascular groove running along its lower margin, and that a similar structure is present in the corresponding part of the lower jaw of some species of opossum, of the Wombat, of the Balcena antarctica, and of the Myrmecobius, though the groove does
form structure, as in certain reptiles; but, on reference to the fossils, Mr. Owen states, it will be found that such is not the case, and that the actual difference in the structure of the teeth strongly supports the mammiferous theory of the fossils.
2. With respect to the argument founded on an interpretation of structure, which really exists, the author showed, that the Thylacotherium, having eleven molars on each side of the lower jaw is no objection to its mammiferous nature, because among the placental carnivora, the Canis Megalotis has constantly one more grinder on each side of the lower jaw than the usual number; because the Chrysochlore among the Insectivora has also eightinstead of seven molars in each ramus of the lower jaw ; and the Myrmecobius, among the Marsupialia, has nine molars on each side of the lower jaw; and because some of the insectivorous Armadillos and zoophagous Cetacea offer still more numerous and reptile-like teeth, with all the true and essential characters of the mammiferous class. The objection to the false molars having two fangs, Mr. Owen showed was futile, as the greater number of the spurious molars in every genus of the placental fere have two fangs, and the whole of them in the Marsupialia. If the ascending ramus in the Stonesfield jaws had been absent, and with it the evidence of their mammiferous nature afforded by the condyloid, coronoid and angular processes, Mr . Owen stated, that he conceived the teeth alone would have given sufficient proof, especially in their double fangs, that the fossils do belong to the highest class of animals.

In reply to the objections founded on the double fangs of the Basilosaurus, Mr. Owen said, that the characters of that fossil not having been fully given, it is doubtful to what class the animal belonged; and, in answer to the opinion, that certain sharks have double fangs, he explained, that the widely bifurcate basis supporting the tooth of the shark, is no part of the actual tooth, but true bone, and ossified parts of the jaw itself, to which the tooth is anchylosed at one part, and the ligaments of connexion attached at the other. The form, depth and position of the sockets of the teeth in the Thylacothere are precisely similar to those in the small opossums. The colour of the fossils, Mr. Owen said, could be no objection to those acquainted with the diversity in this respect, which obtains in the fossil remains of Mammalia. Lastly, with respect to the Thylacothere, the author stated, that the only trace of compound structure is a mere vascular groove running along its lower margin, and that a similar structure is present in the corresponding part of the lower jaw of some species of opossum, of the Wombat, of the Balcena antarctica, and of the Myrmecobius, though the groove does
form structure, as in certain reptiles; but, on reference to the fossils, Mr. Owen states, it will be found that such is not the case, and that the actual difference in the structure of the teeth strongly supports the mammiferous theory of the fossils.
2. With respect to the argument founded on an interpretation of structure, which really exists, the author showed, that the Thylacotherium, having eleven molars on each side of the lower jaw is no objection to its mammiferous nature, because among the placental carnivora, the Canis Megalotis has constantly one more grinder on each side of the lower jaw than the usual number; because the Chrysochlore among the Insectivora has also eightinstead of seven molars in each ramus of the lower jaw ; and the Myrmecobius, among the Marsupialia, has nine molars on each side of the lower jaw; and because some of the insectivorous Armadillos and zoophagous Cetacea offer still more numerous and reptile-like teeth, with all the true and essential characters of the mammiferous class. The objection to the false molars having two fangs, Mr. Owen showed was futile, as the greater number of the spurious molars in every genus of the placental fere have two fangs, and the whole of them in the Marsupialia. If the ascending ramus in the Stonesfield jaws had been absent, and with it the evidence of their mammiferous nature afforded by the condyloid, coronoid and angular processes, Mr . Owen stated, that he conceived the teeth alone would have given sufficient proof, especially in their double fangs, that the fossils do belong to the highest class of animals.

In reply to the objections founded on the double fangs of the Basilosaurus, Mr. Owen said, that the characters of that fossil not having been fully given, it is doubtful to what class the animal belonged; and, in answer to the opinion, that certain sharks have double fangs, he explained, that the widely bifurcate basis supporting the tooth of the shark, is no part of the actual tooth, but true bone, and ossified parts of the jaw itself, to which the tooth is anchylosed at one part, and the ligaments of connexion attached at the other. The form, depth and position of the sockets of the teeth in the Thylacothere are precisely similar to those in the small opossums. The colour of the fossils, Mr. Owen said, could be no objection to those acquainted with the diversity in this respect, which obtains in the fossil remains of Mammalia. Lastly, with respect to the Thylacothere, the author stated, that the only trace of compound structure is a mere vascular groove running along its lower margin, and that a similar structure is present in the corresponding part of the lower jaw of some species of opossum, of the Wombat, of the Balcena antarctica, and of the Myrmecobius, though the groove does
not reach so far forwards in this animal; and that a similar groove is present near the lower margin, but on the outer side of the jaw, in the Sorex Indicus.

Description of the Half Jaw of the Phascolotherium -This fossil is a right ramus of the lower jaw, having its internal or mesial surface exposed. It once formed the chief ornament of the private collection of Mr. Broderip, by whom it has since been liberally presented to the British Museum. It was-described by Mr. Broderip in the Zoological Journal, and its distinction from the Thylacotherium clearly pointed out. The condyle of the jaw is entire, standing in bold relief, and presents the same form and degree of convexity as in the genera Didelphys and Dasyurus. In its being on a level with the molar teeth, it corresponds with the marsupial genera Dasyurus and Thylacynus as well as with the placental zoophaga. The general form and proportions of the coronoid process closely resemble those in zoophagous marsupials; but in the depth and form of the entering notch, between the process and the condyle, it corresponds most closely with the Thylacynus. Judging from the fractured surface of the inwardly reflected angle, that part had an extended oblique base, similar to the inflected angle of the Thylacynus. In the Phascolotherium the flattened inferior surface of the jaw, external to the fractured inflected angle, inclines outwards at an obtuse angle with the plane of the ascending ramus, and not at an acute angle, as in the Thylacyne and Dasyurus; but this difference is not one which approximates the fossil in question to any of the placental zoophaga: on the contrary, it is in the marsupial genus Phascolomys, where a precisely similar relation of the inferior flattened base to the elevated plate of the ascending ramus of the jaw is manifested. In the position of the dental foramen, the Phascolothere, like the Thylacothere, differs from all zoophagous marsupials, and the placental fera; but in the Hypsiprymnus and Phascolomys, marsupial herbivora, the orifice of the dental canal is situated, as in the Stonesfield fossils, very near the vertical line dropped from the last molar teeth. The form of the symphysis, in the Phascolothere, cannot be truly determined ; but Mr. Owen is of opinion that it resembles the symphysis of the Didelphys more than that of the Dasyurus or Thylacynus.

Mr. Owen agrees with Mr. Broderip in assigning four incisors to each ramus of the lower jaw of the Phascolothere, as in the Didelphys; but in their scattered arrangement they resemble the incisors of the Myrmecobius. In the relative extent of the alveolar ridge occupied by the grinders, and in the proportions of the grinders to each other, espe-
not reach so far forwards in this animal; and that a similar groove is present near the lower margin, but on the outer side of the jaw, in the Sorex Indicus.

Description of the Half Jaw of the Phascolotherium -This fossil is a right ramus of the lower jaw, having its internal or mesial surface exposed. It once formed the chief ornament of the private collection of Mr. Broderip, by whom it has since been liberally presented to the British Museum. It was-described by Mr. Broderip in the Zoological Journal, and its distinction from the Thylacotherium clearly pointed out. The condyle of the jaw is entire, standing in bold relief, and presents the same form and degree of convexity as in the genera Didelphys and Dasyurus. In its being on a level with the molar teeth, it corresponds with the marsupial genera Dasyurus and Thylacynus as well as with the placental zoophaga. The general form and proportions of the coronoid process closely resemble those in zoophagous marsupials; but in the depth and form of the entering notch, between the process and the condyle, it corresponds most closely with the Thylacynus. Judging from the fractured surface of the inwardly reflected angle, that part had an extended oblique base, similar to the inflected angle of the Thylacynus. In the Phascolotherium the flattened inferior surface of the jaw, external to the fractured inflected angle, inclines outwards at an obtuse angle with the plane of the ascending ramus, and not at an acute angle, as in the Thylacyne and Dasyurus; but this difference is not one which approximates the fossil in question to any of the placental zoophaga: on the contrary, it is in the marsupial genus Phascolomys, where a precisely similar relation of the inferior flattened base to the elevated plate of the ascending ramus of the jaw is manifested. In the position of the dental foramen, the Phascolothere, like the Thylacothere, differs from all zoophagous marsupials, and the placental fera; but in the Hypsiprymnus and Phascolomys, marsupial herbivora, the orifice of the dental canal is situated, as in the Stonesfield fossils, very near the vertical line dropped from the last molar teeth. The form of the symphysis, in the Phascolothere, cannot be truly determined ; but Mr. Owen is of opinion that it resembles the symphysis of the Didelphys more than that of the Dasyurus or Thylacynus.

Mr. Owen agrees with Mr. Broderip in assigning four incisors to each ramus of the lower jaw of the Phascolothere, as in the Didelphys; but in their scattered arrangement they resemble the incisors of the Myrmecobius. In the relative extent of the alveolar ridge occupied by the grinders, and in the proportions of the grinders to each other, espe-
not reach so far forwards in this animal; and that a similar groove is present near the lower margin, but on the outer side of the jaw, in the Sorex Indicus.

Description of the Half Jaw of the Phascolotherium -This fossil is a right ramus of the lower jaw, having its internal or mesial surface exposed. It once formed the chief ornament of the private collection of Mr. Broderip, by whom it has since been liberally presented to the British Museum. It was-described by Mr. Broderip in the Zoological Journal, and its distinction from the Thylacotherium clearly pointed out. The condyle of the jaw is entire, standing in bold relief, and presents the same form and degree of convexity as in the genera Didelphys and Dasyurus. In its being on a level with the molar teeth, it corresponds with the marsupial genera Dasyurus and Thylacynus as well as with the placental zoophaga. The general form and proportions of the coronoid process closely resemble those in zoophagous marsupials; but in the depth and form of the entering notch, between the process and the condyle, it corresponds most closely with the Thylacynus. Judging from the fractured surface of the inwardly reflected angle, that part had an extended oblique base, similar to the inflected angle of the Thylacynus. In the Phascolotherium the flattened inferior surface of the jaw, external to the fractured inflected angle, inclines outwards at an obtuse angle with the plane of the ascending ramus, and not at an acute angle, as in the Thylacyne and Dasyurus; but this difference is not one which approximates the fossil in question to any of the placental zoophaga: on the contrary, it is in the marsupial genus Phascolomys, where a precisely similar relation of the inferior flattened base to the elevated plate of the ascending ramus of the jaw is manifested. In the position of the dental foramen, the Phascolothere, like the Thylacothere, differs from all zoophagous marsupials, and the placental fera; but in the Hypsiprymnus and Phascolomys, marsupial herbivora, the orifice of the dental canal is situated, as in the Stonesfield fossils, very near the vertical line dropped from the last molar teeth. The form of the symphysis, in the Phascolothere, cannot be truly determined ; but Mr. Owen is of opinion that it resembles the symphysis of the Didelphys more than that of the Dasyurus or Thylacynus.

Mr. Owen agrees with Mr. Broderip in assigning four incisors to each ramus of the lower jaw of the Phascolothere, as in the Didelphys; but in their scattered arrangement they resemble the incisors of the Myrmecobius. In the relative extent of the alveolar ridge occupied by the grinders, and in the proportions of the grinders to each other, espe-
not reach so far forwards in this animal; and that a similar groove is present near the lower margin, but on the outer side of the jaw, in the Sorex Indicus.

Description of the Half Jaw of the Phascolotherium -This fossil is a right ramus of the lower jaw, having its internal or mesial surface exposed. It once formed the chief ornament of the private collection of Mr. Broderip, by whom it has since been liberally presented to the British Museum. It was-described by Mr. Broderip in the Zoological Journal, and its distinction from the Thylacotherium clearly pointed out. The condyle of the jaw is entire, standing in bold relief, and presents the same form and degree of convexity as in the genera Didelphys and Dasyurus. In its being on a level with the molar teeth, it corresponds with the marsupial genera Dasyurus and Thylacynus as well as with the placental zoophaga. The general form and proportions of the coronoid process closely resemble those in zoophagous marsupials; but in the depth and form of the entering notch, between the process and the condyle, it corresponds most closely with the Thylacynus. Judging from the fractured surface of the inwardly reflected angle, that part had an extended oblique base, similar to the inflected angle of the Thylacynus. In the Phascolotherium the flattened inferior surface of the jaw, external to the fractured inflected angle, inclines outwards at an obtuse angle with the plane of the ascending ramus, and not at an acute angle, as in the Thylacyne and Dasyurus; but this difference is not one which approximates the fossil in question to any of the placental zoophaga: on the contrary, it is in the marsupial genus Phascolomys, where a precisely similar relation of the inferior flattened base to the elevated plate of the ascending ramus of the jaw is manifested. In the position of the dental foramen, the Phascolothere, like the Thylacothere, differs from all zoophagous marsupials, and the placental fera; but in the Hypsiprymnus and Phascolomys, marsupial herbivora, the orifice of the dental canal is situated, as in the Stonesfield fossils, very near the vertical line dropped from the last molar teeth. The form of the symphysis, in the Phascolothere, cannot be truly determined ; but Mr. Owen is of opinion that it resembles the symphysis of the Didelphys more than that of the Dasyurus or Thylacynus.

Mr. Owen agrees with Mr. Broderip in assigning four incisors to each ramus of the lower jaw of the Phascolothere, as in the Didelphys; but in their scattered arrangement they resemble the incisors of the Myrmecobius. In the relative extent of the alveolar ridge occupied by the grinders, and in the proportions of the grinders to each other, espe-
cially the small size of the hindermost molar; the Phascolothere resembles the Myrmecobius more than it does the Opossum, Dasyurus or Thylacynus; but in the form of the crown, the molars of the fossil resemble the Thylacynus more closely than any other genus of marsupials. In the number of the grinders the Phascolothere resembles the Opossum and Thylacine, having four true and three false in each maxillary ramus; but the molares veri of the fossil differ from those of the Opossum and Thylacothere in wanting a pointed tubercle on the inner side of the middle large tubercle, and in the same transverse line with it, the place being occupied by a ridge which extends along the inner side of the base of the crown of the true molars, and projects a little beyond the anterior and posterior smaller cusps, giving the quinquecuspid appearance to the crown of the tooth. This ridge, which, in Phascolotherium, represents the inner cusps of the true molars in Didelphys and Thylacotherium, is wanting in Thylacynus, in which the true molars are more simple than in the Phascolothere, though hardly less distinguishable from the false molars. In the second true molar of the Phascolothere, the internal ridge is also obsolete at the base of the middle cusp, and this tooth presents a close resemblance to the corresponding tooth in the Thylacine; but in the Thylacine the two posterior molars increase in size, while in the Phascolothere they progressively diminish, as in the Myrmecobius. As the outer sides of the grinders in the jaw of the Phascolothere are imbedded in the matrix, we cannot be sure that there is not a smaller cuspidated ridge sloping down towards that side, as in the crowns of the teeth of the Myrmecobius. But, assuming that all the cusps of the teeth of the Phascolothere are exhibited in the fossil, still the crowns of these teeth resemble those of the Thylacine more than they do those of any placental Insectivora or Phoca, if even the furm of the jaw permitted a comparison of it with that of any of the seal tribe. Connecting then the close resemblance which the molar teeth of the Phascolotherium bear to those of the Thylacynus with the similarities of the ascending ramus of the jaw, Mr. Owen is of opinion that the Stonesfield fossil was nearly allied to Thylacynus, and that its position in the marsupial series is between Thylacynus and Didelphys. With respect to the supposed compound structure of the jaw of the Phascolotherium, Mr. Owen is of opinion that, of the two linear impressions which have been mistaken for harmonie or toothless sutures, one, a faint shallow linear impression continued from between the antepenultimate and penultimate molars obliquely downwards and backwards to the foramen of the dental artery, is due to the pressure of a small
cially the small size of the hindermost molar; the Phascolothere resembles the Myrmecobius more than it does the Opossum, Dasyurus or Thylacynus; but in the form of the crown, the molars of the fossil resemble the Thylacynus more closely than any other genus of marsupials. In the number of the grinders the Phascolothere resembles the Opossum and Thylacine, having four true and three false in each maxillary ramus; but the molares veri of the fossil differ from those of the Opossum and Thylacothere in wanting a pointed tubercle on the inner side of the middle large tubercle, and in the same transverse line with it, the place being occupied by a ridge which extends along the inner side of the base of the crown of the true molars, and projects a little beyond the anterior and posterior smaller cusps, giving the quinquecuspid appearance to the crown of the tooth. This ridge, which, in Phascolotherium, represents the inner cusps of the true molars in Didelphys and Thylacotherium, is wanting in Thylacynus, in which the true molars are more simple than in the Phascolothere, though hardly less distinguishable from the false molars. In the second true molar of the Phascolothere, the internal ridge is also obsolete at the base of the middle cusp, and this tooth presents a close resemblance to the corresponding tooth in the Thylacine; but in the Thylacine the two posterior molars increase in size, while in the Phascolothere they progressively diminish, as in the Myrmecobius. As the outer sides of the grinders in the jaw of the Phascolothere are imbedded in the matrix, we cannot be sure that there is not a smaller cuspidated ridge sloping down towards that side, as in the crowns of the teeth of the Myrmecobius. But, assuming that all the cusps of the teeth of the Phascolothere are exhibited in the fossil, still the crowns of these teeth resemble those of the Thylacine more than they do those of any placental Insectivora or Phoca, if even the furm of the jaw permitted a comparison of it with that of any of the seal tribe. Connecting then the close resemblance which the molar teeth of the Phascolotherium bear to those of the Thylacynus with the similarities of the ascending ramus of the jaw, Mr. Owen is of opinion that the Stonesfield fossil was nearly allied to Thylacynus, and that its position in the marsupial series is between Thylacynus and Didelphys. With respect to the supposed compound structure of the jaw of the Phascolotherium, Mr. Owen is of opinion that, of the two linear impressions which have been mistaken for harmonie or toothless sutures, one, a faint shallow linear impression continued from between the antepenultimate and penultimate molars obliquely downwards and backwards to the foramen of the dental artery, is due to the pressure of a small
cially the small size of the hindermost molar; the Phascolothere resembles the Myrmecobius more than it does the Opossum, Dasyurus or Thylacynus; but in the form of the crown, the molars of the fossil resemble the Thylacynus more closely than any other genus of marsupials. In the number of the grinders the Phascolothere resembles the Opossum and Thylacine, having four true and three false in each maxillary ramus; but the molares veri of the fossil differ from those of the Opossum and Thylacothere in wanting a pointed tubercle on the inner side of the middle large tubercle, and in the same transverse line with it, the place being occupied by a ridge which extends along the inner side of the base of the crown of the true molars, and projects a little beyond the anterior and posterior smaller cusps, giving the quinquecuspid appearance to the crown of the tooth. This ridge, which, in Phascolotherium, represents the inner cusps of the true molars in Didelphys and Thylacotherium, is wanting in Thylacynus, in which the true molars are more simple than in the Phascolothere, though hardly less distinguishable from the false molars. In the second true molar of the Phascolothere, the internal ridge is also obsolete at the base of the middle cusp, and this tooth presents a close resemblance to the corresponding tooth in the Thylacine; but in the Thylacine the two posterior molars increase in size, while in the Phascolothere they progressively diminish, as in the Myrmecobius. As the outer sides of the grinders in the jaw of the Phascolothere are imbedded in the matrix, we cannot be sure that there is not a smaller cuspidated ridge sloping down towards that side, as in the crowns of the teeth of the Myrmecobius. But, assuming that all the cusps of the teeth of the Phascolothere are exhibited in the fossil, still the crowns of these teeth resemble those of the Thylacine more than they do those of any placental Insectivora or Phoca, if even the furm of the jaw permitted a comparison of it with that of any of the seal tribe. Connecting then the close resemblance which the molar teeth of the Phascolotherium bear to those of the Thylacynus with the similarities of the ascending ramus of the jaw, Mr. Owen is of opinion that the Stonesfield fossil was nearly allied to Thylacynus, and that its position in the marsupial series is between Thylacynus and Didelphys. With respect to the supposed compound structure of the jaw of the Phascolotherium, Mr. Owen is of opinion that, of the two linear impressions which have been mistaken for harmonie or toothless sutures, one, a faint shallow linear impression continued from between the antepenultimate and penultimate molars obliquely downwards and backwards to the foramen of the dental artery, is due to the pressure of a small
cially the small size of the hindermost molar; the Phascolothere resembles the Myrmecobius more than it does the Opossum, Dasyurus or Thylacynus; but in the form of the crown, the molars of the fossil resemble the Thylacynus more closely than any other genus of marsupials. In the number of the grinders the Phascolothere resembles the Opossum and Thylacine, having four true and three false in each maxillary ramus; but the molares veri of the fossil differ from those of the Opossum and Thylacothere in wanting a pointed tubercle on the inner side of the middle large tubercle, and in the same transverse line with it, the place being occupied by a ridge which extends along the inner side of the base of the crown of the true molars, and projects a little beyond the anterior and posterior smaller cusps, giving the quinquecuspid appearance to the crown of the tooth. This ridge, which, in Phascolotherium, represents the inner cusps of the true molars in Didelphys and Thylacotherium, is wanting in Thylacynus, in which the true molars are more simple than in the Phascolothere, though hardly less distinguishable from the false molars. In the second true molar of the Phascolothere, the internal ridge is also obsolete at the base of the middle cusp, and this tooth presents a close resemblance to the corresponding tooth in the Thylacine; but in the Thylacine the two posterior molars increase in size, while in the Phascolothere they progressively diminish, as in the Myrmecobius. As the outer sides of the grinders in the jaw of the Phascolothere are imbedded in the matrix, we cannot be sure that there is not a smaller cuspidated ridge sloping down towards that side, as in the crowns of the teeth of the Myrmecobius. But, assuming that all the cusps of the teeth of the Phascolothere are exhibited in the fossil, still the crowns of these teeth resemble those of the Thylacine more than they do those of any placental Insectivora or Phoca, if even the furm of the jaw permitted a comparison of it with that of any of the seal tribe. Connecting then the close resemblance which the molar teeth of the Phascolotherium bear to those of the Thylacynus with the similarities of the ascending ramus of the jaw, Mr. Owen is of opinion that the Stonesfield fossil was nearly allied to Thylacynus, and that its position in the marsupial series is between Thylacynus and Didelphys. With respect to the supposed compound structure of the jaw of the Phascolotherium, Mr. Owen is of opinion that, of the two linear impressions which have been mistaken for harmonie or toothless sutures, one, a faint shallow linear impression continued from between the antepenultimate and penultimate molars obliquely downwards and backwards to the foramen of the dental artery, is due to the pressure of a small
artery, and that the author possesses the jaw of a Didelphys Virginiana which exhibits a similar groove in the same place. Moreover, this groove in the Phascolothere does not occupy the same relative position as any of the contiguous margins of the opercular and dentary pieces of a reptile's jaw. The other impression in the jaw of the Phascolotherium is a deep groove continued from the anterior extremity of the fractured base of the inflected angle obliquely downwards to the broken surface of the anterior part of the jaw. Whether this line be due to a vascular impression, or an accidental fracture, is doubtful ; but as the lower jaw of the Wombat presents an impression in the precisely corresponding situation, and which is undoubtedly due to the presence of an artery, Mr. Owen conceives that this impression is also natural in the Phascolothere, but equally unconnected with a compound structure of the jaw; for there is not any suture in the compound jaw of a reptile which occupies a corresponding situation.

The most numerous, the most characteristic, and the best marked sutures in the compound jaws of a reptile, are those which define the limits of the coronoid, articular, angular, and surangular pieces, and which are chiefly conspicuous on the inner side of the posterior part of the jaw. Now the corresponding surface of the jaw of the Phascolothere is entire; yet the smallest trace of sutures, or of any indication that the coronoid or articular processes were distinct pieces, cannot be detected; these processes are clearly and indisputably continuous, and confluent with the rest of the ramus of the jaw. So that where sutures ought to be visible, if the jaw of the Phascolothere were composite, there are none ; and the hypothetical sutures that are apparent do not agree in position with any of the real sutures of an oviparous compound jaw.

Lastly, with reference to the philosophy of pronouncing judgment on the saurian nature of the Stonesfield fossils from the appearance of sutures, Mr. Owen offered one remark, the justness of which, he said would be obvious alike to those who were, and to those who were not, conversant with comparative anatomy. The accumulative evidence of the true nature of the Stonesfield fossils, afforded by the shape of the condyle, coronoid process, angle of the jaw, different kinds of teeth, shape of their crowns, double fangs, impiantation in sockets,-the appearance, he repeated, presented by these important particulars cannot be due to accident; while those which favour the evidence of the compound structure of the jaw may arise from accidental circumstances.

Ann. Nat. Hist. Vol. 3. No. 16. May 1839.
artery, and that the author possesses the jaw of a Didelphys Virginiana which exhibits a similar groove in the same place. Moreover, this groove in the Phascolothere does not occupy the same relative position as any of the contiguous margins of the opercular and dentary pieces of a reptile's jaw. The other impression in the jaw of the Phascolotherium is a deep groove continued from the anterior extremity of the fractured base of the inflected angle obliquely downwards to the broken surface of the anterior part of the jaw. Whether this line be due to a vascular impression, or an accidental fracture, is doubtful ; but as the lower jaw of the Wombat presents an impression in the precisely corresponding situation, and which is undoubtedly due to the presence of an artery, Mr. Owen conceives that this impression is also natural in the Phascolothere, but equally unconnected with a compound structure of the jaw; for there is not any suture in the compound jaw of a reptile which occupies a corresponding situation.

The most numerous, the most characteristic, and the best marked sutures in the compound jaws of a reptile, are those which define the limits of the coronoid, articular, angular, and surangular pieces, and which are chiefly conspicuous on the inner side of the posterior part of the jaw. Now the corresponding surface of the jaw of the Phascolothere is entire; yet the smallest trace of sutures, or of any indication that the coronoid or articular processes were distinct pieces, cannot be detected; these processes are clearly and indisputably continuous, and confluent with the rest of the ramus of the jaw. So that where sutures ought to be visible, if the jaw of the Phascolothere were composite, there are none ; and the hypothetical sutures that are apparent do not agree in position with any of the real sutures of an oviparous compound jaw.

Lastly, with reference to the philosophy of pronouncing judgment on the saurian nature of the Stonesfield fossils from the appearance of sutures, Mr. Owen offered one remark, the justness of which, he said would be obvious alike to those who were, and to those who were not, conversant with comparative anatomy. The accumulative evidence of the true nature of the Stonesfield fossils, afforded by the shape of the condyle, coronoid process, angle of the jaw, different kinds of teeth, shape of their crowns, double fangs, impiantation in sockets,-the appearance, he repeated, presented by these important particulars cannot be due to accident; while those which favour the evidence of the compound structure of the jaw may arise from accidental circumstances.

Ann. Nat. Hist. Vol. 3. No. 16. May 1839.
artery, and that the author possesses the jaw of a Didelphys Virginiana which exhibits a similar groove in the same place. Moreover, this groove in the Phascolothere does not occupy the same relative position as any of the contiguous margins of the opercular and dentary pieces of a reptile's jaw. The other impression in the jaw of the Phascolotherium is a deep groove continued from the anterior extremity of the fractured base of the inflected angle obliquely downwards to the broken surface of the anterior part of the jaw. Whether this line be due to a vascular impression, or an accidental fracture, is doubtful ; but as the lower jaw of the Wombat presents an impression in the precisely corresponding situation, and which is undoubtedly due to the presence of an artery, Mr. Owen conceives that this impression is also natural in the Phascolothere, but equally unconnected with a compound structure of the jaw; for there is not any suture in the compound jaw of a reptile which occupies a corresponding situation.

The most numerous, the most characteristic, and the best marked sutures in the compound jaws of a reptile, are those which define the limits of the coronoid, articular, angular, and surangular pieces, and which are chiefly conspicuous on the inner side of the posterior part of the jaw. Now the corresponding surface of the jaw of the Phascolothere is entire; yet the smallest trace of sutures, or of any indication that the coronoid or articular processes were distinct pieces, cannot be detected; these processes are clearly and indisputably continuous, and confluent with the rest of the ramus of the jaw. So that where sutures ought to be visible, if the jaw of the Phascolothere were composite, there are none ; and the hypothetical sutures that are apparent do not agree in position with any of the real sutures of an oviparous compound jaw.

Lastly, with reference to the philosophy of pronouncing judgment on the saurian nature of the Stonesfield fossils from the appearance of sutures, Mr. Owen offered one remark, the justness of which, he said would be obvious alike to those who were, and to those who were not, conversant with comparative anatomy. The accumulative evidence of the true nature of the Stonesfield fossils, afforded by the shape of the condyle, coronoid process, angle of the jaw, different kinds of teeth, shape of their crowns, double fangs, impiantation in sockets,-the appearance, he repeated, presented by these important particulars cannot be due to accident; while those which favour the evidence of the compound structure of the jaw may arise from accidental circumstances.

Ann. Nat. Hist. Vol. 3. No. 16. May 1839.
artery, and that the author possesses the jaw of a Didelphys Virginiana which exhibits a similar groove in the same place. Moreover, this groove in the Phascolothere does not occupy the same relative position as any of the contiguous margins of the opercular and dentary pieces of a reptile's jaw. The other impression in the jaw of the Phascolotherium is a deep groove continued from the anterior extremity of the fractured base of the inflected angle obliquely downwards to the broken surface of the anterior part of the jaw. Whether this line be due to a vascular impression, or an accidental fracture, is doubtful ; but as the lower jaw of the Wombat presents an impression in the precisely corresponding situation, and which is undoubtedly due to the presence of an artery, Mr. Owen conceives that this impression is also natural in the Phascolothere, but equally unconnected with a compound structure of the jaw; for there is not any suture in the compound jaw of a reptile which occupies a corresponding situation.

The most numerous, the most characteristic, and the best marked sutures in the compound jaws of a reptile, are those which define the limits of the coronoid, articular, angular, and surangular pieces, and which are chiefly conspicuous on the inner side of the posterior part of the jaw. Now the corresponding surface of the jaw of the Phascolothere is entire; yet the smallest trace of sutures, or of any indication that the coronoid or articular processes were distinct pieces, cannot be detected; these processes are clearly and indisputably continuous, and confluent with the rest of the ramus of the jaw. So that where sutures ought to be visible, if the jaw of the Phascolothere were composite, there are none ; and the hypothetical sutures that are apparent do not agree in position with any of the real sutures of an oviparous compound jaw.

Lastly, with reference to the philosophy of pronouncing judgment on the saurian nature of the Stonesfield fossils from the appearance of sutures, Mr. Owen offered one remark, the justness of which, he said would be obvious alike to those who were, and to those who were not, conversant with comparative anatomy. The accumulative evidence of the true nature of the Stonesfield fossils, afforded by the shape of the condyle, coronoid process, angle of the jaw, different kinds of teeth, shape of their crowns, double fangs, impiantation in sockets,-the appearance, he repeated, presented by these important particulars cannot be due to accident; while those which favour the evidence of the compound structure of the jaw may arise from accidental circumstances.

Ann. Nat. Hist. Vol. 3. No. 16. May 1839.

Jan. 9, 1839.-A paper was read, entitled, "Observations on the Teeth of the Zeuglodon, Basilosaurus of Dr. Harlan," by Richard Owen, Esq., F.G.S.

During the recent discussions respecting the Stonesfield fossil jaws, one of the strongest arguments adduced and reiterated by M. de Blainville and others in support of their saurian nature, was founded on the presumed existence in America of a fossil reptile possessing teeth with double fangs, and called by Dr. Harlan the Basilosaurus. To the validity of this argument, Mr. Owen refused to assent, until the teeth of the American fossil had been subjected to a re-examination with an especial view to their alleged mode of implantation in the jaw ; and until they had been submitted to the test of the microscopic investigation of their intimate structure with reference to the true affinities of the animal to which they belonged. The recent arrival of Dr. Harlan in England with the fossils, and the permission which he has liberally granted Mr. Owen of having the necessary sections made, have enabled him to determine the mammiferous nature of the fossil.

Among the parts of the Basilosaurus brought to England by Dr. Harlan, are two portions of bone belonging to the upper jaw ; the larger of them contains three teeth; the other, the sockets of two teeth. In the larger specimen, the crowns of the teeth aremore or less perfect, and they are compressed and conical, but with an obtuse apex. The longitudinal diameter of the middle, and most perfect one, is three inches, the transverse diameter one inch two lines, and the height above the alveolar process two inches and a half. The crown is transversely contracted in the middle, giving its horizontal section an hour-glass form; and the opposite wide longitudinal grooves which produce this shape, becoming deeper as the crown approaches the socket, at length meet and divide the root of the tooth into two separate fangs. The two teeth in the fore part of the jaw are smaller than the hinder tooth, and the anterior one appears to be of a simpler structure.
A worn-down tooth contained in another portion of jaw, Mr. Owen had sliced, and it presented the same hour-glass form, the crown being divided into two irregular, rounded lobes joined by a narrow isthmus or neck. The anterior lobe is placed obliquely, but the posterior parallel with the axis of the jaw. The isthmus increases in length as the tooth descends in the socket until the isthmus finally disappears, and the two portions of the tooth take on the character of separate fangs.
The sockets in the anterior fragment of the upper jaw are indistinct

Jan. 9, 1839.-A paper was read, entitled, "Observations on the Teeth of the Zeuglodon, Basilosaurus of Dr. Harlan," by Richard Owen, Esq., F.G.S.

During the recent discussions respecting the Stonesfield fossil jaws, one of the strongest arguments adduced and reiterated by M. de Blainville and others in support of their saurian nature, was founded on the presumed existence in America of a fossil reptile possessing teeth with double fangs, and called by Dr. Harlan the Basilosaurus. To the validity of this argument, Mr. Owen refused to assent, until the teeth of the American fossil had been subjected to a re-examination with an especial view to their alleged mode of implantation in the jaw ; and until they had been submitted to the test of the microscopic investigation of their intimate structure with reference to the true affinities of the animal to which they belonged. The recent arrival of Dr. Harlan in England with the fossils, and the permission which he has liberally granted Mr. Owen of having the necessary sections made, have enabled him to determine the mammiferous nature of the fossil.

Among the parts of the Basilosaurus brought to England by Dr. Harlan, are two portions of bone belonging to the upper jaw ; the larger of them contains three teeth; the other, the sockets of two teeth. In the larger specimen, the crowns of the teeth aremore or less perfect, and they are compressed and conical, but with an obtuse apex. The longitudinal diameter of the middle, and most perfect one, is three inches, the transverse diameter one inch two lines, and the height above the alveolar process two inches and a half. The crown is transversely contracted in the middle, giving its horizontal section an hour-glass form; and the opposite wide longitudinal grooves which produce this shape, becoming deeper as the crown approaches the socket, at length meet and divide the root of the tooth into two separate fangs. The two teeth in the fore part of the jaw are smaller than the hinder tooth, and the anterior one appears to be of a simpler structure.
A worn-down tooth contained in another portion of jaw, Mr. Owen had sliced, and it presented the same hour-glass form, the crown being divided into two irregular, rounded lobes joined by a narrow isthmus or neck. The anterior lobe is placed obliquely, but the posterior parallel with the axis of the jaw. The isthmus increases in length as the tooth descends in the socket until the isthmus finally disappears, and the two portions of the tooth take on the character of separate fangs.
The sockets in the anterior fragment of the upper jaw are indistinct

Jan. 9, 1839.-A paper was read, entitled, "Observations on the Teeth of the Zeuglodon, Basilosaurus of Dr. Harlan," by Richard Owen, Esq., F.G.S.

During the recent discussions respecting the Stonesfield fossil jaws, one of the strongest arguments adduced and reiterated by M. de Blainville and others in support of their saurian nature, was founded on the presumed existence in America of a fossil reptile possessing teeth with double fangs, and called by Dr. Harlan the Basilosaurus. To the validity of this argument, Mr. Owen refused to assent, until the teeth of the American fossil had been subjected to a re-examination with an especial view to their alleged mode of implantation in the jaw ; and until they had been submitted to the test of the microscopic investigation of their intimate structure with reference to the true affinities of the animal to which they belonged. The recent arrival of Dr. Harlan in England with the fossils, and the permission which he has liberally granted Mr. Owen of having the necessary sections made, have enabled him to determine the mammiferous nature of the fossil.

Among the parts of the Basilosaurus brought to England by Dr. Harlan, are two portions of bone belonging to the upper jaw ; the larger of them contains three teeth; the other, the sockets of two teeth. In the larger specimen, the crowns of the teeth aremore or less perfect, and they are compressed and conical, but with an obtuse apex. The longitudinal diameter of the middle, and most perfect one, is three inches, the transverse diameter one inch two lines, and the height above the alveolar process two inches and a half. The crown is transversely contracted in the middle, giving its horizontal section an hour-glass form; and the opposite wide longitudinal grooves which produce this shape, becoming deeper as the crown approaches the socket, at length meet and divide the root of the tooth into two separate fangs. The two teeth in the fore part of the jaw are smaller than the hinder tooth, and the anterior one appears to be of a simpler structure.
A worn-down tooth contained in another portion of jaw, Mr. Owen had sliced, and it presented the same hour-glass form, the crown being divided into two irregular, rounded lobes joined by a narrow isthmus or neck. The anterior lobe is placed obliquely, but the posterior parallel with the axis of the jaw. The isthmus increases in length as the tooth descends in the socket until the isthmus finally disappears, and the two portions of the tooth take on the character of separate fangs.
The sockets in the anterior fragment of the upper jaw are indistinct

Jan. 9, 1839.-A paper was read, entitled, "Observations on the Teeth of the Zeuglodon, Basilosaurus of Dr. Harlan," by Richard Owen, Esq., F.G.S.

During the recent discussions respecting the Stonesfield fossil jaws, one of the strongest arguments adduced and reiterated by M. de Blainville and others in support of their saurian nature, was founded on the presumed existence in America of a fossil reptile possessing teeth with double fangs, and called by Dr. Harlan the Basilosaurus. To the validity of this argument, Mr. Owen refused to assent, until the teeth of the American fossil had been subjected to a re-examination with an especial view to their alleged mode of implantation in the jaw ; and until they had been submitted to the test of the microscopic investigation of their intimate structure with reference to the true affinities of the animal to which they belonged. The recent arrival of Dr. Harlan in England with the fossils, and the permission which he has liberally granted Mr. Owen of having the necessary sections made, have enabled him to determine the mammiferous nature of the fossil.

Among the parts of the Basilosaurus brought to England by Dr. Harlan, are two portions of bone belonging to the upper jaw ; the larger of them contains three teeth; the other, the sockets of two teeth. In the larger specimen, the crowns of the teeth aremore or less perfect, and they are compressed and conical, but with an obtuse apex. The longitudinal diameter of the middle, and most perfect one, is three inches, the transverse diameter one inch two lines, and the height above the alveolar process two inches and a half. The crown is transversely contracted in the middle, giving its horizontal section an hour-glass form; and the opposite wide longitudinal grooves which produce this shape, becoming deeper as the crown approaches the socket, at length meet and divide the root of the tooth into two separate fangs. The two teeth in the fore part of the jaw are smaller than the hinder tooth, and the anterior one appears to be of a simpler structure.
A worn-down tooth contained in another portion of jaw, Mr. Owen had sliced, and it presented the same hour-glass form, the crown being divided into two irregular, rounded lobes joined by a narrow isthmus or neck. The anterior lobe is placed obliquely, but the posterior parallel with the axis of the jaw. The isthmus increases in length as the tooth descends in the socket until the isthmus finally disappears, and the two portions of the tooth take on the character of separate fangs.
The sockets in the anterior fragment of the upper jaw are indistinct
and filled with hard calcareous matter, but a transverse horizontal section of the alveolar margin proves, that these sockets are single, and that the teeth lodged therein had single fangs. This fragment of the lower jaw thus confirms the evidence afforded by the fragments of the upper jaw, that the teeth in the Basilosaurus were of two kinds, the anterior being smaller and simpler in form and further from each other than those behind.

Mr. Owen then proceeds to compare the Basilosaurus with those animals which have their teeth lodged in distinct sockets, as the Sphyræna, and its congeners among fishes, the Plesiosauroid and Crocodilean Sauria, and the class Mammalia; but as there is no instance of either fish or reptile having teeth implanted by two fangs in a double socket, he commences his comparison of the Basilosaurus with those Mammalia which most nearly resemble the fossil in other respects. Among the zoophagous Cetacea the teeth are always similar as to form and structure, and are invariably implanted in the socket by a broad and simple basis, and they never have two fangs. Among the herbivorous Cetacea however, the structure, form, number and mode of implantation of the teeth differ considerably. In the Manatee, the molars have two long and separate fangs lodged in deep sockets, and the anterior teeth, when worn down, present a form of the crown similar to that of the Basilosaurus, but the opposite indentations are not so deep; and the entire grinding surface of the molars of the Manatee differs considerably from those of the Basilosaurus, the anterior supporting two transverse conical ridges, and the posterior three. The Dugong resembles more nearly the fossil in its molar teeth; the anterior ones being smaller and simpler than the posterior, and the complication of the latter being due to exactly the same kind of modification as in the Basiloraurus, viz. a transverse constriction of the crown. The posterior molar has its longitudinal diameter increased, and its transverse section approaches to the hour-glass figure, produced by opposite grooves. There is in this tooth also a tendency to the formation of a double fang, and the establishment of two centres of radiation for the calcigerous tubes of the ivory, but the double fang is probably never completed. The teeth in the Dugong moreover are not scattered as in the Basilosaurus.

Mr. Owen then briefly compared the teeth of the fossil with those of the Saurians, and stated that he had not found a single instance of agreement in the Basilosaurus with the known dental peculiarities of that class. From the Mosasaurus the teeth of the American fossil differ in being implanted freely in sockets and
and filled with hard calcareous matter, but a transverse horizontal section of the alveolar margin proves, that these sockets are single, and that the teeth lodged therein had single fangs. This fragment of the lower jaw thus confirms the evidence afforded by the fragments of the upper jaw, that the teeth in the Basilosaurus were of two kinds, the anterior being smaller and simpler in form and further from each other than those behind.

Mr. Owen then proceeds to compare the Basilosaurus with those animals which have their teeth lodged in distinct sockets, as the Sphyræna, and its congeners among fishes, the Plesiosauroid and Crocodilean Sauria, and the class Mammalia; but as there is no instance of either fish or reptile having teeth implanted by two fangs in a double socket, he commences his comparison of the Basilosaurus with those Mammalia which most nearly resemble the fossil in other respects. Among the zoophagous Cetacea the teeth are always similar as to form and structure, and are invariably implanted in the socket by a broad and simple basis, and they never have two fangs. Among the herbivorous Cetacea however, the structure, form, number and mode of implantation of the teeth differ considerably. In the Manatee, the molars have two long and separate fangs lodged in deep sockets, and the anterior teeth, when worn down, present a form of the crown similar to that of the Basilosaurus, but the opposite indentations are not so deep; and the entire grinding surface of the molars of the Manatee differs considerably from those of the Basilosaurus, the anterior supporting two transverse conical ridges, and the posterior three. The Dugong resembles more nearly the fossil in its molar teeth; the anterior ones being smaller and simpler than the posterior, and the complication of the latter being due to exactly the same kind of modification as in the Basiloraurus, viz. a transverse constriction of the crown. The posterior molar has its longitudinal diameter increased, and its transverse section approaches to the hour-glass figure, produced by opposite grooves. There is in this tooth also a tendency to the formation of a double fang, and the establishment of two centres of radiation for the calcigerous tubes of the ivory, but the double fang is probably never completed. The teeth in the Dugong moreover are not scattered as in the Basilosaurus.

Mr. Owen then briefly compared the teeth of the fossil with those of the Saurians, and stated that he had not found a single instance of agreement in the Basilosaurus with the known dental peculiarities of that class. From the Mosasaurus the teeth of the American fossil differ in being implanted freely in sockets and
and filled with hard calcareous matter, but a transverse horizontal section of the alveolar margin proves, that these sockets are single, and that the teeth lodged therein had single fangs. This fragment of the lower jaw thus confirms the evidence afforded by the fragments of the upper jaw, that the teeth in the Basilosaurus were of two kinds, the anterior being smaller and simpler in form and further from each other than those behind.

Mr. Owen then proceeds to compare the Basilosaurus with those animals which have their teeth lodged in distinct sockets, as the Sphyræna, and its congeners among fishes, the Plesiosauroid and Crocodilean Sauria, and the class Mammalia; but as there is no instance of either fish or reptile having teeth implanted by two fangs in a double socket, he commences his comparison of the Basilosaurus with those Mammalia which most nearly resemble the fossil in other respects. Among the zoophagous Cetacea the teeth are always similar as to form and structure, and are invariably implanted in the socket by a broad and simple basis, and they never have two fangs. Among the herbivorous Cetacea however, the structure, form, number and mode of implantation of the teeth differ considerably. In the Manatee, the molars have two long and separate fangs lodged in deep sockets, and the anterior teeth, when worn down, present a form of the crown similar to that of the Basilosaurus, but the opposite indentations are not so deep; and the entire grinding surface of the molars of the Manatee differs considerably from those of the Basilosaurus, the anterior supporting two transverse conical ridges, and the posterior three. The Dugong resembles more nearly the fossil in its molar teeth; the anterior ones being smaller and simpler than the posterior, and the complication of the latter being due to exactly the same kind of modification as in the Basiloraurus, viz. a transverse constriction of the crown. The posterior molar has its longitudinal diameter increased, and its transverse section approaches to the hour-glass figure, produced by opposite grooves. There is in this tooth also a tendency to the formation of a double fang, and the establishment of two centres of radiation for the calcigerous tubes of the ivory, but the double fang is probably never completed. The teeth in the Dugong moreover are not scattered as in the Basilosaurus.

Mr. Owen then briefly compared the teeth of the fossil with those of the Saurians, and stated that he had not found a single instance of agreement in the Basilosaurus with the known dental peculiarities of that class. From the Mosasaurus the teeth of the American fossil differ in being implanted freely in sockets and
and filled with hard calcareous matter, but a transverse horizontal section of the alveolar margin proves, that these sockets are single, and that the teeth lodged therein had single fangs. This fragment of the lower jaw thus confirms the evidence afforded by the fragments of the upper jaw, that the teeth in the Basilosaurus were of two kinds, the anterior being smaller and simpler in form and further from each other than those behind.

Mr. Owen then proceeds to compare the Basilosaurus with those animals which have their teeth lodged in distinct sockets, as the Sphyræna, and its congeners among fishes, the Plesiosauroid and Crocodilean Sauria, and the class Mammalia; but as there is no instance of either fish or reptile having teeth implanted by two fangs in a double socket, he commences his comparison of the Basilosaurus with those Mammalia which most nearly resemble the fossil in other respects. Among the zoophagous Cetacea the teeth are always similar as to form and structure, and are invariably implanted in the socket by a broad and simple basis, and they never have two fangs. Among the herbivorous Cetacea however, the structure, form, number and mode of implantation of the teeth differ considerably. In the Manatee, the molars have two long and separate fangs lodged in deep sockets, and the anterior teeth, when worn down, present a form of the crown similar to that of the Basilosaurus, but the opposite indentations are not so deep; and the entire grinding surface of the molars of the Manatee differs considerably from those of the Basilosaurus, the anterior supporting two transverse conical ridges, and the posterior three. The Dugong resembles more nearly the fossil in its molar teeth; the anterior ones being smaller and simpler than the posterior, and the complication of the latter being due to exactly the same kind of modification as in the Basiloraurus, viz. a transverse constriction of the crown. The posterior molar has its longitudinal diameter increased, and its transverse section approaches to the hour-glass figure, produced by opposite grooves. There is in this tooth also a tendency to the formation of a double fang, and the establishment of two centres of radiation for the calcigerous tubes of the ivory, but the double fang is probably never completed. The teeth in the Dugong moreover are not scattered as in the Basilosaurus.

Mr. Owen then briefly compared the teeth of the fossil with those of the Saurians, and stated that he had not found a single instance of agreement in the Basilosaurus with the known dental peculiarities of that class. From the Mosasaurus the teeth of the American fossil differ in being implanted freely in sockets and
not anchylosed to the substance of the jaw ; from the Ichthyosaurus and all the lacertine Sauria in being implanted in distinct sockets, and not in a continuous groove; from the Plesiosaurus and crocodilean reptiles from the fangs not being simple and expanding as they descend, but double, diminishing in size as they sink in the socket, and becoming consolidated by the progressive deposition of dental substance from temporary pulp in progress of absorption. In the Enaliosauria and the Crocodilia, moreover, there are invariably two or more germs of new teeth in different stages of formation close to or contained within the cavity of the base of the protruded teeth; but the Basilosaurus presents no trace of this characteristic Saurian structure. From the external characters only of the teeth, Mr. Owen therefore infers, that the fossil was a Mammifer of the cetaceous order, and intermediate to the herbivorous and piscivorous sections of that order, as it now stands in the Cuvierian system.

In consequence however of the Basilosaurus laving been regarded as affording an exceptional example among Reptilia of teeth having two fangs, though contrary to all analogy, and as the other characters stated above may be considered by the same anatomists to be only exceptions, Mr. Owen procured sections of the teeth for microscopic examination of their intimate structure and for comparing it with that of the teeth of other animals.

In the Sphyræna and allied fossil fishes which are implanted in sockets, the teeth are characterized by a continuation of medullary canals, arranged in a beautifully reticulated manner, extending through the entire substance of the tooth, and affording innumerable centres of radiation to extremely fine calcigerous tubes.

In the Ichthyosaurus and Crocodile the pulp cavity is simple and central, as in Mammalia, and the calcigerous tubuli radiate from this centre to every part of the circumference of the tooth, to which they are generally at right angles. The crown of the tooth in these Saurians is covered with enamel, while that part of the tooth which is in the alveolus is surrounded with a thick layer of cortical substance. In the Dolphins which have simple conical teeth like the higher reptiles, the crown is also covered with enamel and the base with cæmentum. But in the Cachalot and Dugong the whole of the teeth is covered with cæmentum. In the Dugong this external layer presents the same characteristic radiated purkingian corpuscles or cells as in the cæmentum of the human teeth, and those of other animals; but the cæmentum of the Dugong differs from that of the Pachyderms and Ruminants in being traversed by numerous calcigerous tubes, the corpuscles or cells being scattered in the interstices
not anchylosed to the substance of the jaw ; from the Ichthyosaurus and all the lacertine Sauria in being implanted in distinct sockets, and not in a continuous groove; from the Plesiosaurus and crocodilean reptiles from the fangs not being simple and expanding as they descend, but double, diminishing in size as they sink in the socket, and becoming consolidated by the progressive deposition of dental substance from temporary pulp in progress of absorption. In the Enaliosauria and the Crocodilia, moreover, there are invariably two or more germs of new teeth in different stages of formation close to or contained within the cavity of the base of the protruded teeth; but the Basilosaurus presents no trace of this characteristic Saurian structure. From the external characters only of the teeth, Mr. Owen therefore infers, that the fossil was a Mammifer of the cetaceous order, and intermediate to the herbivorous and piscivorous sections of that order, as it now stands in the Cuvierian system.

In consequence however of the Basilosaurus laving been regarded as affording an exceptional example among Reptilia of teeth having two fangs, though contrary to all analogy, and as the other characters stated above may be considered by the same anatomists to be only exceptions, Mr. Owen procured sections of the teeth for microscopic examination of their intimate structure and for comparing it with that of the teeth of other animals.

In the Sphyræna and allied fossil fishes which are implanted in sockets, the teeth are characterized by a continuation of medullary canals, arranged in a beautifully reticulated manner, extending through the entire substance of the tooth, and affording innumerable centres of radiation to extremely fine calcigerous tubes.

In the Ichthyosaurus and Crocodile the pulp cavity is simple and central, as in Mammalia, and the calcigerous tubuli radiate from this centre to every part of the circumference of the tooth, to which they are generally at right angles. The crown of the tooth in these Saurians is covered with enamel, while that part of the tooth which is in the alveolus is surrounded with a thick layer of cortical substance. In the Dolphins which have simple conical teeth like the higher reptiles, the crown is also covered with enamel and the base with cæmentum. But in the Cachalot and Dugong the whole of the teeth is covered with cæmentum. In the Dugong this external layer presents the same characteristic radiated purkingian corpuscles or cells as in the cæmentum of the human teeth, and those of other animals; but the cæmentum of the Dugong differs from that of the Pachyderms and Ruminants in being traversed by numerous calcigerous tubes, the corpuscles or cells being scattered in the interstices
not anchylosed to the substance of the jaw ; from the Ichthyosaurus and all the lacertine Sauria in being implanted in distinct sockets, and not in a continuous groove; from the Plesiosaurus and crocodilean reptiles from the fangs not being simple and expanding as they descend, but double, diminishing in size as they sink in the socket, and becoming consolidated by the progressive deposition of dental substance from temporary pulp in progress of absorption. In the Enaliosauria and the Crocodilia, moreover, there are invariably two or more germs of new teeth in different stages of formation close to or contained within the cavity of the base of the protruded teeth; but the Basilosaurus presents no trace of this characteristic Saurian structure. From the external characters only of the teeth, Mr. Owen therefore infers, that the fossil was a Mammifer of the cetaceous order, and intermediate to the herbivorous and piscivorous sections of that order, as it now stands in the Cuvierian system.

In consequence however of the Basilosaurus laving been regarded as affording an exceptional example among Reptilia of teeth having two fangs, though contrary to all analogy, and as the other characters stated above may be considered by the same anatomists to be only exceptions, Mr. Owen procured sections of the teeth for microscopic examination of their intimate structure and for comparing it with that of the teeth of other animals.

In the Sphyræna and allied fossil fishes which are implanted in sockets, the teeth are characterized by a continuation of medullary canals, arranged in a beautifully reticulated manner, extending through the entire substance of the tooth, and affording innumerable centres of radiation to extremely fine calcigerous tubes.

In the Ichthyosaurus and Crocodile the pulp cavity is simple and central, as in Mammalia, and the calcigerous tubuli radiate from this centre to every part of the circumference of the tooth, to which they are generally at right angles. The crown of the tooth in these Saurians is covered with enamel, while that part of the tooth which is in the alveolus is surrounded with a thick layer of cortical substance. In the Dolphins which have simple conical teeth like the higher reptiles, the crown is also covered with enamel and the base with cæmentum. But in the Cachalot and Dugong the whole of the teeth is covered with cæmentum. In the Dugong this external layer presents the same characteristic radiated purkingian corpuscles or cells as in the cæmentum of the human teeth, and those of other animals; but the cæmentum of the Dugong differs from that of the Pachyderms and Ruminants in being traversed by numerous calcigerous tubes, the corpuscles or cells being scattered in the interstices
not anchylosed to the substance of the jaw ; from the Ichthyosaurus and all the lacertine Sauria in being implanted in distinct sockets, and not in a continuous groove; from the Plesiosaurus and crocodilean reptiles from the fangs not being simple and expanding as they descend, but double, diminishing in size as they sink in the socket, and becoming consolidated by the progressive deposition of dental substance from temporary pulp in progress of absorption. In the Enaliosauria and the Crocodilia, moreover, there are invariably two or more germs of new teeth in different stages of formation close to or contained within the cavity of the base of the protruded teeth; but the Basilosaurus presents no trace of this characteristic Saurian structure. From the external characters only of the teeth, Mr. Owen therefore infers, that the fossil was a Mammifer of the cetaceous order, and intermediate to the herbivorous and piscivorous sections of that order, as it now stands in the Cuvierian system.

In consequence however of the Basilosaurus laving been regarded as affording an exceptional example among Reptilia of teeth having two fangs, though contrary to all analogy, and as the other characters stated above may be considered by the same anatomists to be only exceptions, Mr. Owen procured sections of the teeth for microscopic examination of their intimate structure and for comparing it with that of the teeth of other animals.

In the Sphyræna and allied fossil fishes which are implanted in sockets, the teeth are characterized by a continuation of medullary canals, arranged in a beautifully reticulated manner, extending through the entire substance of the tooth, and affording innumerable centres of radiation to extremely fine calcigerous tubes.

In the Ichthyosaurus and Crocodile the pulp cavity is simple and central, as in Mammalia, and the calcigerous tubuli radiate from this centre to every part of the circumference of the tooth, to which they are generally at right angles. The crown of the tooth in these Saurians is covered with enamel, while that part of the tooth which is in the alveolus is surrounded with a thick layer of cortical substance. In the Dolphins which have simple conical teeth like the higher reptiles, the crown is also covered with enamel and the base with cæmentum. But in the Cachalot and Dugong the whole of the teeth is covered with cæmentum. In the Dugong this external layer presents the same characteristic radiated purkingian corpuscles or cells as in the cæmentum of the human teeth, and those of other animals; but the cæmentum of the Dugong differs from that of the Pachyderms and Ruminants in being traversed by numerous calcigerous tubes, the corpuscles or cells being scattered in the interstices
of these tubes. Now the crowns of the teeth of the Basilosaurus evidently exhibit in many parts a thin investing layer of a substance distinct from the body or ivory of the tooth, and the microscopic examination of a thin layer of this substance proves it to possess the same characters as the cæmentum of the crown of the tooth of the Dugong. The entire substance of the ivory of the teeth consists of fine calcigerous tubes radiating from the centres of the two lobes, without any intermixture of coarser medullary tubes which characterize the teeth of the Iguanodon; or the slightest trace of the reticulated canals, which distinguish the texture of the teeth of the Sphyræna and its congeners. The calcigerous tubes undulate regularly, and also communicate with numerous minute cells arranged in concentric lines.

Thus, the microscopic characters of the texture of the teeth of the great Basilosaurus are strictly of a mammiferous nature, and confirm the inference respecting the position of the fossil in the natural system drawn from the external aspect of the teeth.

Mr. Owen then adduced further proofs of the mammiferous and cetaceous character of the Basilosaurus, from the structure of the vertebræ, from the great capacity of the canal for the spinal chord, and from the form and position of the transverse processes, which however present a greater vertical thickness than in the true Cetacea, and approach in this respect to the vertebræ of the Dugong.

With respect to the other bones of the Basilosaurus, Mr. Owen stated, that the ribs in their excentric laminated structure are peculiar, and unlike those of any Mammal or Saurian. The hollow structure of the lower jaw of the Basilosaurus, which has been advanced as a proof of its saurian nature, Mr. Owen showed occurs also in the lower jaw of the Cachalot, and is therefore equally good for the cetaceous character of the fossil.

In the compressed shaft of the humerus, and its proportion to the vertebræ, the Basilosaurus again approximates to the true Cetacea, as much as it recedes from the Enaliosaurians; but in the expansion of the distal extremity and the form of the articular surface, this humerus stands alone; and no one can contemplate the comparative feebleness of this, the principal bone of the anterior extremity, without agreeing with Dr. Harlan, that the tail must have been the main organ of locomotion.

Mr. Owen proposes to substitute for the name of Basilosaurus that of Zeuglodon, suggested by the form of the posterior molars, which resemble two teeth tied or yoked together.
of these tubes. Now the crowns of the teeth of the Basilosaurus evidently exhibit in many parts a thin investing layer of a substance distinct from the body or ivory of the tooth, and the microscopic examination of a thin layer of this substance proves it to possess the same characters as the cæmentum of the crown of the tooth of the Dugong. The entire substance of the ivory of the teeth consists of fine calcigerous tubes radiating from the centres of the two lobes, without any intermixture of coarser medullary tubes which characterize the teeth of the Iguanodon; or the slightest trace of the reticulated canals, which distinguish the texture of the teeth of the Sphyræna and its congeners. The calcigerous tubes undulate regularly, and also communicate with numerous minute cells arranged in concentric lines.

Thus, the microscopic characters of the texture of the teeth of the great Basilosaurus are strictly of a mammiferous nature, and confirm the inference respecting the position of the fossil in the natural system drawn from the external aspect of the teeth.

Mr. Owen then adduced further proofs of the mammiferous and cetaceous character of the Basilosaurus, from the structure of the vertebræ, from the great capacity of the canal for the spinal chord, and from the form and position of the transverse processes, which however present a greater vertical thickness than in the true Cetacea, and approach in this respect to the vertebræ of the Dugong.

With respect to the other bones of the Basilosaurus, Mr. Owen stated, that the ribs in their excentric laminated structure are peculiar, and unlike those of any Mammal or Saurian. The hollow structure of the lower jaw of the Basilosaurus, which has been advanced as a proof of its saurian nature, Mr. Owen showed occurs also in the lower jaw of the Cachalot, and is therefore equally good for the cetaceous character of the fossil.

In the compressed shaft of the humerus, and its proportion to the vertebræ, the Basilosaurus again approximates to the true Cetacea, as much as it recedes from the Enaliosaurians; but in the expansion of the distal extremity and the form of the articular surface, this humerus stands alone; and no one can contemplate the comparative feebleness of this, the principal bone of the anterior extremity, without agreeing with Dr. Harlan, that the tail must have been the main organ of locomotion.

Mr. Owen proposes to substitute for the name of Basilosaurus that of Zeuglodon, suggested by the form of the posterior molars, which resemble two teeth tied or yoked together.
of these tubes. Now the crowns of the teeth of the Basilosaurus evidently exhibit in many parts a thin investing layer of a substance distinct from the body or ivory of the tooth, and the microscopic examination of a thin layer of this substance proves it to possess the same characters as the cæmentum of the crown of the tooth of the Dugong. The entire substance of the ivory of the teeth consists of fine calcigerous tubes radiating from the centres of the two lobes, without any intermixture of coarser medullary tubes which characterize the teeth of the Iguanodon; or the slightest trace of the reticulated canals, which distinguish the texture of the teeth of the Sphyræna and its congeners. The calcigerous tubes undulate regularly, and also communicate with numerous minute cells arranged in concentric lines.

Thus, the microscopic characters of the texture of the teeth of the great Basilosaurus are strictly of a mammiferous nature, and confirm the inference respecting the position of the fossil in the natural system drawn from the external aspect of the teeth.

Mr. Owen then adduced further proofs of the mammiferous and cetaceous character of the Basilosaurus, from the structure of the vertebræ, from the great capacity of the canal for the spinal chord, and from the form and position of the transverse processes, which however present a greater vertical thickness than in the true Cetacea, and approach in this respect to the vertebræ of the Dugong.

With respect to the other bones of the Basilosaurus, Mr. Owen stated, that the ribs in their excentric laminated structure are peculiar, and unlike those of any Mammal or Saurian. The hollow structure of the lower jaw of the Basilosaurus, which has been advanced as a proof of its saurian nature, Mr. Owen showed occurs also in the lower jaw of the Cachalot, and is therefore equally good for the cetaceous character of the fossil.

In the compressed shaft of the humerus, and its proportion to the vertebræ, the Basilosaurus again approximates to the true Cetacea, as much as it recedes from the Enaliosaurians; but in the expansion of the distal extremity and the form of the articular surface, this humerus stands alone; and no one can contemplate the comparative feebleness of this, the principal bone of the anterior extremity, without agreeing with Dr. Harlan, that the tail must have been the main organ of locomotion.

Mr. Owen proposes to substitute for the name of Basilosaurus that of Zeuglodon, suggested by the form of the posterior molars, which resemble two teeth tied or yoked together.
of these tubes. Now the crowns of the teeth of the Basilosaurus evidently exhibit in many parts a thin investing layer of a substance distinct from the body or ivory of the tooth, and the microscopic examination of a thin layer of this substance proves it to possess the same characters as the cæmentum of the crown of the tooth of the Dugong. The entire substance of the ivory of the teeth consists of fine calcigerous tubes radiating from the centres of the two lobes, without any intermixture of coarser medullary tubes which characterize the teeth of the Iguanodon; or the slightest trace of the reticulated canals, which distinguish the texture of the teeth of the Sphyræna and its congeners. The calcigerous tubes undulate regularly, and also communicate with numerous minute cells arranged in concentric lines.

Thus, the microscopic characters of the texture of the teeth of the great Basilosaurus are strictly of a mammiferous nature, and confirm the inference respecting the position of the fossil in the natural system drawn from the external aspect of the teeth.

Mr. Owen then adduced further proofs of the mammiferous and cetaceous character of the Basilosaurus, from the structure of the vertebræ, from the great capacity of the canal for the spinal chord, and from the form and position of the transverse processes, which however present a greater vertical thickness than in the true Cetacea, and approach in this respect to the vertebræ of the Dugong.

With respect to the other bones of the Basilosaurus, Mr. Owen stated, that the ribs in their excentric laminated structure are peculiar, and unlike those of any Mammal or Saurian. The hollow structure of the lower jaw of the Basilosaurus, which has been advanced as a proof of its saurian nature, Mr. Owen showed occurs also in the lower jaw of the Cachalot, and is therefore equally good for the cetaceous character of the fossil.

In the compressed shaft of the humerus, and its proportion to the vertebræ, the Basilosaurus again approximates to the true Cetacea, as much as it recedes from the Enaliosaurians; but in the expansion of the distal extremity and the form of the articular surface, this humerus stands alone; and no one can contemplate the comparative feebleness of this, the principal bone of the anterior extremity, without agreeing with Dr. Harlan, that the tail must have been the main organ of locomotion.

Mr. Owen proposes to substitute for the name of Basilosaurus that of Zeuglodon, suggested by the form of the posterior molars, which resemble two teeth tied or yoked together.

[^0]: * According to a recent calculation, made from the degree of temperature at which water boiled on the top of this mountain (viz. 196°), it possesses an absolute height of 0000 feet, being by far the highest point reached hitherto by any traveller in Austialia.

[^1]: * According to a recent calculation, made from the degree of temperature at which water boiled on the top of this mountain (viz. 196°), it possesses an absolute height of 0000 feet, being by far the highest point reached hitherto by any traveller in Austialia.

[^2]: * According to a recent calculation, made from the degree of temperature at which water boiled on the top of this mountain (viz. 196°), it possesses an absolute height of 0000 feet, being by far the highest point reached hitherto by any traveller in Austialia.

[^3]: * According to a recent calculation, made from the degree of temperature at which water boiled on the top of this mountain (viz. 196°), it possesses an absolute height of 0000 feet, being by far the highest point reached hitherto by any traveller in Austialia.

